The impute_matrix
function performs data imputation on matrix
objects instance using a variety of methods (see below).
Users should proceed with care when imputing data and take precautions to assure that the imputation produces valid results, in particular with naive imputations such as replacing missing values with 0.
Usage
impute_matrix(x, method, FUN, ...)
imputeMethods()
impute_neighbour_average(x, k = min(x, na.rm = TRUE), MARGIN = 1L)
impute_knn(x, MARGIN = 1L, ...)
impute_mle(x, MARGIN = 2L, ...)
impute_bpca(x, MARGIN = 1L, ...)
impute_RF(x, MARGIN = 2L, ...)
impute_mixed(x, randna, mar, mnar, MARGIN = 1L, ...)
impute_min(x)
impute_MinDet(x, q = 0.01, MARGIN = 2L)
impute_MinProb(x, q = 0.01, sigma = 1, MARGIN = 2L)
impute_QRILC(x, sigma = 1, MARGIN = 2L)
impute_zero(x)
impute_with(x, val)
impute_fun(x, FUN, MARGIN = 1L, ...)
getImputeMargin(fun)
Arguments
- x
A matrix or an
HDF5Matrix
object to be imputed.- method
character(1)
defining the imputation method. SeeimputeMethods()
for available ones.- FUN
A user-provided function that takes a
matrix
as input and returns an imputedmatrix
of identical dimensions.- ...
Additional parameters passed to the inner imputation function.
- k
numeric(1)
providing the imputation value used for the first and last samples if they contain anNA
. The default is to use the smallest value in the data.- MARGIN
integer(1)
defining the margin along which to apply imputation, with1L
for rows and2L
for columns. The default value will depend on the imputation method. UsegetImputeMargin(fun)
to get the default margin of imputation functionfun
. If the function doesn't take a margin argument,NA
is returned.- randna
logical
of length equal tonrow(object)
defining which rows are missing at random. The other ones are considered missing not at random. Only relevant whenmethods
ismixed
.- mar
Imputation method for values missing at random. See
method
above.- mnar
Imputation method for values missing not at random. See
method
above.- q
numeric(1)
indicating the quantile to be used to estimate the minimum inMinDet
andMinProb
. Default is 0.01.- sigma
numeric(1)
controling the standard deviation of the MNAR distribution inMinProb
andQRILC
. Default is 1.- val
numeric(1)
used to replace all missing values.- fun
The imputation function to get the default margin from.
Types of missing values
There are two types of mechanisms resulting in missing values in LC/MSMS experiments.
Missing values resulting from absence of detection of a feature, despite ions being present at detectable concentrations. For example in the case of ion suppression or as a result from the stochastic, data-dependent nature of the DDA MS acquisition method. These missing value are expected to be randomly distributed in the data and are defined, in statistical terms, as missing at random (MAR) or missing completely at random (MCAR).
Biologically relevant missing values resulting from the absence or the low abundance of ions (i.e. below the limit of detection of the instrument). These missing values are not expected to be randomly distributed in the data and are defined as missing not at random (MNAR).
MNAR features should ideally be imputed with a left-censor method,
such as QRILC
below. Conversely, it is recommended to use hot
deck methods such nearest neighbours, Bayesian missing value
imputation or maximum likelihood methods when values are missing
at random.
Imputing by rows or columns
We assume that the input matrix x
contains features along the
rows and samples along the columns, as is generally the case in
omics data analysis. When performing imputation, the missing
values are taken as a feature-specific property: feature x is
missing because it is absent (in a sample or group), or because it
was missed during acquisition (not selected during data dependent
acquisition) or data processing (not identified or with an
identification score below a chosen false discovery threshold). As
such, imputation is by default performed at the feature
level. In some cases, such as imputation by zero or a global
minimum value, it doesn't matter. In other cases, it does matter
very much, such as for example when using the minimum value
computed for each margin (i.e. row or column) as in the MinDet
method (see below) - do we want to use the minimum of the sample
or of that feature? KNN is another such example: do we consider
the most similar features to impute a feature with missing values,
or the most similar samples to impute all missing in a sample.
The MARGIN
argument can be used to change the imputation margin
from features/rows (MARGIN = 1
) to samples/columns (MARGIN = 2
).
Different imputations will have different default values, and
changing this parameter can have a major impact on imputation results
and downstream results.
Imputation methods
Currently, the following imputation methods are available.
MLE: Maximum likelihood-based imputation method using the EM algorithm. The
impute_mle()
function relies onnorm::imp.norm()
. function. Seenorm::imp.norm()
for details and additional parameters. Note that here,...
are passed to thenorm::em.norm()
function, rather to the actual imputation functionimp.norm
.bpca: Bayesian missing value imputation are available, as implemented in the
pcaMethods::pca()
function. SeepcaMethods::pca()
for details and additional parameters.RF: Random Forest imputation, as implemented in the
missForest::missForest
function. SeemissForest::missForest()
] for details and additional parameters.knn: Nearest neighbour averaging, as implemented in the
impute::impute.knn
function. Seeimpute::impute.knn()
] for details and additional parameters.QRILC: A missing data imputation method that performs the imputation of left-censored missing data using random draws from a truncated distribution with parameters estimated using quantile regression. The
impute_QRILC()
function callsimputeLCMD::impute.QRILC()
from theimputeLCMD
package.MinDet: Performs the imputation of left-censored missing data using a deterministic minimal value approach. Considering a expression data with n samples and p features, for each sample, the missing entries are replaced with a minimal value observed in that sample. The minimal value observed is estimated as being the q-th quantile (default
q = 0.01
) of the observed values in that sample. The implementation in based on theimputeLCMD::impute.MinDet()
function.MinProb: Performs the imputation of left-censored missing data by random draws from a Gaussian distribution centred to a minimal value. Considering an expression data matrix with n samples and p features, for each sample, the mean value of the Gaussian distribution is set to a minimal observed value in that sample. The minimal value observed is estimated as being the q-th quantile (default
q = 0.01
) of the observed values in that sample. The standard deviation is estimated as the median of the feature (or sample) standard deviations. Note that when estimating the standard deviation of the Gaussian distribution, only the peptides/proteins which present more than 50\ values are considered. Theimpute_MinProb()
function callsimputeLCMD::impute.MinProb()
from theimputeLCMD
package.min: Replaces the missing values with the smallest non-missing value in the data.
zero: Replaces the missing values with 0.
mixed: A mixed imputation applying two methods (to be defined by the user as
mar
for values missing at random andmnar
for values missing not at random, see example) on two MCAR/MNAR subsets of the data (as defined by the user by arandna
logical, of length equal to nrow(object)).nbavg: Average neighbour imputation for fractions collected along a fractionation/separation gradient, such as sub-cellular fractions. The method assumes that the fraction are ordered along the gradient and is invalid otherwise.
Continuous sets
NA
value at the beginning and the end of the quantitation vectors are set to the lowest observed value in the data or to a user defined value passed as argumentk
. Then, when a missing value is flanked by two non-missing neighbouring values, it is imputed by the mean of its direct neighbours.with: Replaces all missing values with a user-provided value.
none: No imputation is performed and the missing values are left untouched. Implemented in case one wants to only impute value missing at random or not at random with the mixed method.
The imputeMethods()
function returns a vector with valid
imputation method names. Use getImputeMargin()
to get the
default margin for each imputation function.
References
Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani, David Botstein and Russ B. Altman, Missing value estimation methods for DNA microarrays Bioinformatics (2001) 17 (6): 520-525.
Oba et al., A Bayesian missing value estimation method for gene expression profile data, Bioinformatics (2003) 19 (16): 2088-2096.
Cosmin Lazar (2015). imputeLCMD: A collection of methods for left-censored missing data imputation. R package version 2.0. http://CRAN.R-project.org/package=imputeLCMD.
Lazar C, Gatto L, Ferro M, Bruley C, Burger T. Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies. J Proteome Res. 2016 Apr 1;15(4):1116-25. doi: 10.1021/acs.jproteome.5b00981. PubMed PMID:26906401.
Examples
## test data
set.seed(42)
m <- matrix(rlnorm(60), 10)
dimnames(m) <- list(letters[1:10], LETTERS[1:6])
m[sample(60, 10)] <- NA
## available methods
imputeMethods()
#> [1] "bpca" "knn" "QRILC" "MLE" "MLE2" "MinDet" "MinProb"
#> [8] "min" "zero" "mixed" "nbavg" "with" "RF" "none"
impute_matrix(m, method = "zero")
#> A B C D E F
#> a 3.9391243 3.6872085 0.0000000 1.57688302 1.2287515 1.37978165
#> b 0.5685317 9.8418666 0.1684176 0.00000000 0.6969391 0.45664959
#> c 1.4378205 0.2493592 0.8420488 2.81539768 0.0000000 4.83425736
#> d 1.8829931 0.7566997 3.3691979 0.54393454 0.0000000 0.00000000
#> e 1.4982059 0.8751838 6.6538355 1.65691116 0.2545441 1.09391242
#> f 0.8993127 0.0000000 0.6502040 0.17960259 1.5415957 1.31857387
#> g 4.5336257 0.0000000 0.7731599 0.45636653 0.4442387 1.97247444
#> h 0.9096830 0.0701966 0.1715015 0.42702719 4.2380415 1.09399145
#> i 0.0000000 0.0000000 0.0000000 0.08943818 0.6495690 0.05013228
#> j 0.9392120 3.7438457 0.5272951 1.03678296 1.9263902 1.32960639
impute_matrix(m, method = "min")
#> A B C D E F
#> a 3.93912433 3.68720845 0.05013228 1.57688302 1.22875148 1.37978165
#> b 0.56853172 9.84186664 0.16841764 0.05013228 0.69693906 0.45664959
#> c 1.43782048 0.24935924 0.84204876 2.81539768 0.05013228 4.83425736
#> d 1.88299314 0.75669973 3.36919788 0.54393454 0.05013228 0.05013228
#> e 1.49820590 0.87518382 6.65383554 1.65691116 0.25454413 1.09391242
#> f 0.89931266 0.05013228 0.65020399 0.17960259 1.54159566 1.31857387
#> g 4.53362571 0.05013228 0.77315991 0.45636653 0.44423873 1.97247444
#> h 0.90968305 0.07019660 0.17150153 0.42702719 4.23804154 1.09399145
#> i 0.05013228 0.05013228 0.05013228 0.08943818 0.64956901 0.05013228
#> j 0.93921196 3.74384570 0.52729513 1.03678296 1.92639019 1.32960639
impute_matrix(m, method = "knn")
#> Loading required namespace: impute
#> Imputing along margin 1 (features/rows).
#> A B C D E F
#> a 3.9391243 3.6872085 1.8777229 1.57688302 1.2287515 1.37978165
#> b 0.5685317 9.8418666 0.1684176 0.93096390 0.6969391 0.45664959
#> c 1.4378205 0.2493592 0.8420488 2.81539768 1.3352059 4.83425736
#> d 1.8829931 0.7566997 3.3691979 0.54393454 1.3352059 1.54557696
#> e 1.4982059 0.8751838 6.6538355 1.65691116 0.2545441 1.09391242
#> f 0.8993127 2.5204465 0.6502040 0.17960259 1.5415957 1.31857387
#> g 4.5336257 2.5204465 0.7731599 0.45636653 0.4442387 1.97247444
#> h 0.9096830 0.0701966 0.1715015 0.42702719 4.2380415 1.09399145
#> i 1.6608509 2.5204465 1.8777229 0.08943818 0.6495690 0.05013228
#> j 0.9392120 3.7438457 0.5272951 1.03678296 1.9263902 1.32960639
## same as impute_zero
impute_matrix(m, method = "with", val = 0)
#> A B C D E F
#> a 3.9391243 3.6872085 0.0000000 1.57688302 1.2287515 1.37978165
#> b 0.5685317 9.8418666 0.1684176 0.00000000 0.6969391 0.45664959
#> c 1.4378205 0.2493592 0.8420488 2.81539768 0.0000000 4.83425736
#> d 1.8829931 0.7566997 3.3691979 0.54393454 0.0000000 0.00000000
#> e 1.4982059 0.8751838 6.6538355 1.65691116 0.2545441 1.09391242
#> f 0.8993127 0.0000000 0.6502040 0.17960259 1.5415957 1.31857387
#> g 4.5336257 0.0000000 0.7731599 0.45636653 0.4442387 1.97247444
#> h 0.9096830 0.0701966 0.1715015 0.42702719 4.2380415 1.09399145
#> i 0.0000000 0.0000000 0.0000000 0.08943818 0.6495690 0.05013228
#> j 0.9392120 3.7438457 0.5272951 1.03678296 1.9263902 1.32960639
## impute with half of the smalles value
impute_matrix(m, method = "with",
val = min(m, na.rm = TRUE) * 0.5)
#> A B C D E F
#> a 3.93912433 3.68720845 0.02506614 1.57688302 1.22875148 1.37978165
#> b 0.56853172 9.84186664 0.16841764 0.02506614 0.69693906 0.45664959
#> c 1.43782048 0.24935924 0.84204876 2.81539768 0.02506614 4.83425736
#> d 1.88299314 0.75669973 3.36919788 0.54393454 0.02506614 0.02506614
#> e 1.49820590 0.87518382 6.65383554 1.65691116 0.25454413 1.09391242
#> f 0.89931266 0.02506614 0.65020399 0.17960259 1.54159566 1.31857387
#> g 4.53362571 0.02506614 0.77315991 0.45636653 0.44423873 1.97247444
#> h 0.90968305 0.07019660 0.17150153 0.42702719 4.23804154 1.09399145
#> i 0.02506614 0.02506614 0.02506614 0.08943818 0.64956901 0.05013228
#> j 0.93921196 3.74384570 0.52729513 1.03678296 1.92639019 1.32960639
## all but third and fourth features' missing values
## are the result of random missing values
randna <- rep(TRUE, 10)
randna[c(3, 9)] <- FALSE
impute_matrix(m, method = "mixed",
randna = randna,
mar = "knn",
mnar = "min")
#> Imputing along margin 1 (features/rows).
#> A B C D E F
#> a 3.93912433 3.68720845 2.35451487 1.57688302 1.22875148 1.37978165
#> b 0.56853172 9.84186664 0.16841764 0.74593934 0.69693906 0.45664959
#> c 1.43782048 0.24935924 0.84204876 2.81539768 0.05013228 4.83425736
#> d 1.88299314 0.75669973 3.36919788 0.54393454 1.34408497 1.44241604
#> e 1.49820590 0.87518382 6.65383554 1.65691116 0.25454413 1.09391242
#> f 0.89931266 2.42140409 0.65020399 0.17960259 1.54159566 1.31857387
#> g 4.53362571 2.42140409 0.77315991 0.45636653 0.44423873 1.97247444
#> h 0.90968305 0.07019660 0.17150153 0.42702719 4.23804154 1.09399145
#> i 0.05013228 0.05013228 0.05013228 0.08943818 0.64956901 0.05013228
#> j 0.93921196 3.74384570 0.52729513 1.03678296 1.92639019 1.32960639
## user provided (random) imputation function
random_imp <- function(x) {
m <- mean(x, na.rm = TRUE)
sdev <- sd(x, na.rm = TRUE)
n <- sum(is.na(x))
x[is.na(x)] <- rnorm(n, mean = m, sd = sdev)
x
}
impute_matrix(m, FUN = random_imp)
#> Imputing along margin 1 (features/rows).
#> A B C D E F
#> a 3.9391243 3.6872085 -0.9827978 1.57688302 1.2287515 1.37978165
#> b 0.5685317 9.8418666 0.1684176 3.34043209 0.6969391 0.45664959
#> c 1.4378205 0.2493592 0.8420488 2.81539768 4.6343602 4.83425736
#> d 1.8829931 0.7566997 3.3691979 0.54393454 -0.3031275 0.79093969
#> e 1.4982059 0.8751838 6.6538355 1.65691116 0.2545441 1.09391242
#> f 0.8993127 2.0228995 0.6502040 0.17960259 1.5415957 1.31857387
#> g 4.5336257 -0.6151082 0.7731599 0.45636653 0.4442387 1.97247444
#> h 0.9096830 0.0701966 0.1715015 0.42702719 4.2380415 1.09399145
#> i 4.5173132 2.2355807 3.0879489 0.08943818 0.6495690 0.05013228
#> j 0.9392120 3.7438457 0.5272951 1.03678296 1.9263902 1.32960639
## get the default margin
getImputeMargin(impute_knn) ## default imputes along features
#> [1] 1
getImputeMargin(impute_mle) ## default imputes along samples
#> [1] 2
getImputeMargin(impute_zero) ## NA: no margin here
#> [1] NA
## default margin for all MsCoreUtils::impute_* functions
sapply(ls("package:MsCoreUtils", pattern = "impute_"), getImputeMargin)
#> impute_MinDet impute_MinProb impute_QRILC
#> 2 2 2
#> impute_RF impute_bpca impute_fun
#> 2 1 1
#> impute_knn impute_matrix impute_min
#> 1 NA NA
#> impute_mixed impute_mle impute_neighbour_average
#> 1 2 1
#> impute_with impute_zero
#> NA NA