
Package index
-
colMeansMat()colSumsMat()aggregate_by_matrix()aggregate_by_vector() - Aggreagate quantitative features
-
bin() - Binning
-
breaks_ppm() - Sequence with increasing difference between elements
-
isPeaksMatrix() - Check functions
-
asInteger() - Coerce functions
-
colCounts() - Counts the number of features
-
common_path() - Extract the common file path
-
ndotproduct()dotproduct()neuclidean()navdist()nspectraangle() - Spectra Distance/Similarity Measurements
-
entropy()nentropy() - Spectral entropy
-
estimateBaseline()estimateBaselineConvexHull()estimateBaselineMedian()estimateBaselineSnip()estimateBaselineTopHat() - Estimates the Baseline of a Mass Spectrum
-
force_sorted() - Forcing a numeric vector into a monotonously increasing sequence.
-
rt2numeric()rt2character()formatRt() - Format Retention Time
-
gnps()join_gnps() - GNPS spectrum similarity scores
-
group() - Grouping of numeric values by similarity
-
i2index() - Input parameter check for subsetting operations
-
impute_matrix()imputeMethods()impute_neighbour_average()impute_knn()impute_mle()impute_bpca()impute_RF()impute_mixed()impute_min()impute_MinDet()impute_MinProb()impute_QRILC()impute_zero()impute_with()impute_fun()getImputeMargin() - Quantitative mass spectrometry data imputation
-
localMaxima() - Local Maxima
-
maxi() - Maximum MS Intensity Value
-
medianPolish() - Return the Median Polish (Robust Twoway Decomposition) of a matrix
-
noise() - Noise Estimation
-
normalizeMethods()normalize_matrix() - Quantitative data normalisation
-
ppm() - PPM - Parts per Million
-
between()`%between%` - Range helper functions
-
rbindFill() - Combine R Objects by Row
-
reduce() - Reduce overlapping numeric ranges to disjoined ranges
-
refineCentroids() - Refine Peak Centroids
-
robustSummary() - Return the Robust Expression Summary of a matrix
-
sumi() - Summing MS Intensity Values
-
validPeaksMatrix() - Validation functions
-
valleys() - Find Peak Valleys
-
vapply1c()vapply1d()vapply1l() - vapply wrappers
-
which.first()which.last() - Which is the first/last TRUE value.