The PSM class is a simple class to store and manipulate peptide-spectrum matches. The class encapsulates PSM data as a DataFrame (or more specifically a DFrame) with additional lightweight metadata annotation.

There are two types of PSM objects:

  • Objects with duplicated spectrum identifiers. This holds for multiple matches to the same spectrum, be it different peptide sequences or the same sequence with or without a post-translational modification. Such objects are typically created with the PSM() constructor starting from mzIdentML files.

  • Reduced objects where the spectrum identifiers (or any equivalent column) are unique keys within the PSM table. Matches to the same scan/spectrum are merged into a single PSM data row. Reduced PSM object are created with the reducePSMs() function. See examples below.

Objects can be checked for their reduced state with the reduced() function which returns TRUE for reduced instances, FALSE when the spectrum identifiers are duplicated, or NA when unknown. The flag can also be set explicitly with the reduced()<- setter.

PSM(
  x,
  spectrum = NA,
  peptide = NA,
  protein = NA,
  decoy = NA,
  rank = NA,
  score = NA,
  fdr = NA,
  parser = c("mzR", "mzID"),
  BPPARAM = SerialParam()
)

reduced(object, spectrum = psmVariables(object)["spectrum"])

reduced(object) <- value

psmVariables(object, which = "all")

reducePSMs(object, k = object[[psmVariables(object)["spectrum"]]])

# S4 method for class 'PSM'
adjacencyMatrix(object)

Arguments

x

character() of mzid file names, an instance of class PSM, or a data.frame.

spectrum

character(1) variable name that defines a spectrum in the PSM data. Default are "spectrumID" (mzR parser) or "spectrumid" (mzID parser). It is also used to calculate the reduced state.

peptide

character(1) variable name that defines a peptide in the PSM data. Detaults are "sequence" (mzR parser) or "pepSeq" (mzID parser).

protein

character(1) variable name that defines a protein in the PSM data. Detaults are "DatabaseAccess" (mzR parser) or "accession" (mzID parser).

decoy

character(1) variable name that defines a decoy hit in the PSM data. Detaults are "isDecoy" (mzR parser) or "isdecoy" (mzID parser).

rank

character(1) variable name that defines the rank of the peptide spectrum match in the PSM data. Default is "rank".

score

character(1) variable name that defines the PSM score. This value isn't set by default as it depends on the search engine and application. Default is NA.

fdr

character(1) variable name that defines that defines the spectrum FDR (or any similar/relevant metric that can be used for filtering). This value isn't set by default as it depends on the search engine and application. Default is NA.

parser

character(1) defining the parser to be used to read the mzIdentML files. One of "mzR" (default) or "mzID".

BPPARAM

an object inheriting from BiocParallelParam to control parallel processing. The default value is SerialParam() to read files in series.

object

An instance of class PSM.

value

new value to be passed to setter.

which

character() with the PSM variable name to retrieve. If "all" (default), all named variables are returned. See PSM() for valid PSM variables.

k

A vector or factor of length equal to nrow(x) that defines the primary key used to reduce x. This typically corresponds to the spectrum identifier. The defauls is to use the spectrum PSM variable.

Value

PSM() returns a PSM object.

reducePSMs() returns a reduced version of the x input.

Creating and using PSM objects

  • The PSM() constructor uses parsers provided by the mzR or mzID packages to read the mzIdentML data. The vignette describes some apparent differences in their outputs. The constructor input is a character of one more multiple file names.

  • PSM objects can also be created from a data.frame object (or any variable that can be coerced into a DataFrame.

  • Finally, PSM() can also take a PSM object as input, which leaves the PSM data as is and is used to set/update the PSM variables.

  • The constructor can also initialise variables (called PSM variables) needed for downstream processing, notably filtering (see filterPSMs()) and to generate a peptide-by-protein adjacency matrix (see makeAdjacencyMatrix()). These variables can be extracted with the psmVariables() function. They represent the columns in the PSM table that identify spectra, peptides, proteins, decoy peptides hit ranks and, optionally, a PSM score. The value of these variables will depend on the backend used to create the object, or left blank (i.e. encoded as NA) when building an object by hand from a data.frame. In such situation, they need to be passed explicitly by the user as arguments to PSM().

  • The adjacencyMatrix() accessor can be used to retrieve the binary sparse peptide-by-protein adjacency matrix from the PSM object. It also relies on PSM variables which thus need to be set beforehand. For more flexibility in the generation of the adjacency matrix (for non-binary matrices), use makeAdjacencyMatrix().

Examples


## ---------------------------------
## Example with a single mzid file
## ---------------------------------

f <- msdata::ident(full.names = TRUE, pattern = "TMT")
basename(f)
#> [1] "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzid"

## mzR parser (default)
psm <- PSM(f)
psm
#> PSM with 5802 rows and 35 columns.
#> names(35): sequence spectrumID ... subReplacementResidue subLocation

## PSM variables
psmVariables(psm)
#>         spectrum          peptide          protein            decoy 
#>     "spectrumID"       "sequence" "DatabaseAccess"        "isDecoy" 
#>             rank            score              fdr 
#>           "rank"               NA               NA 

## mzID parser
psm_mzid <- PSM(f, parser = "mzID")
#> Loading required namespace: mzID
#> reading TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzid...
#> Warning: 'as.is' should be specified by the caller; using TRUE
#> Warning: 'as.is' should be specified by the caller; using TRUE
#> Warning: 'as.is' should be specified by the caller; using TRUE
#> Warning: 'as.is' should be specified by the caller; using TRUE
#> Warning: 'as.is' should be specified by the caller; using TRUE
#> Warning: 'as.is' should be specified by the caller; using TRUE
#> Warning: 'as.is' should be specified by the caller; using TRUE
#> Warning: 'as.is' should be specified by the caller; using TRUE
#> Warning: 'as.is' should be specified by the caller; using TRUE
#> Warning: 'as.is' should be specified by the caller; using TRUE
#> Warning: 'as.is' should be specified by the caller; using TRUE
#> Warning: 'as.is' should be specified by the caller; using TRUE
#> Warning: 'as.is' should be specified by the caller; using TRUE
#>  DONE!
psm_mzid
#> PSM with 5759 rows and 30 columns.
#> names(30): spectrumid scan number(s) ... spectrumFile databaseFile

## different PSM variables
psmVariables(psm_mzid)
#>     spectrum      peptide      protein        decoy         rank        score 
#> "spectrumid"     "pepseq"  "accession"    "isdecoy"       "rank"           NA 
#>          fdr 
#>           NA 

## Reducing the PSM data
(i <- which(duplicated(psm$spectrumID))[1:2])
#> [1]  9 24
(i <- which(psm$spectrumID %in% psm$spectrumID[i]))
#> [1]  8  9 23 24 25 26
psm2 <- psm[i, ]
reduced(psm2)
#> [1] NA

## Peptide sequence CIDRARHVEVQIFGDGKGRVVALGERDCSLQRR with
## Carbamidomethyl modifications at positions 1 and 28.
DataFrame(psm2[, c("sequence", "spectrumID", "modName", "modLocation")])
#> DataFrame with 6 rows and 4 columns
#>        sequence    spectrumID       modName modLocation
#>     <character>   <character>   <character>   <integer>
#> 1 CIDRARHVEV... controller... Carbamidom...           1
#> 2 CIDRARHVEV... controller... Carbamidom...          28
#> 3 KCNQCLKVAC... controller... Carbamidom...           2
#> 4 KCNQCLKVAC... controller... Carbamidom...           5
#> 5 KCNQCLKVAC... controller... Carbamidom...          10
#> 6 KCNQCLKVAC... controller... Carbamidom...          15
reduced(psm2) <- FALSE
reduced(psm2)
#> [1] FALSE

## uses by default the spectrum PSM variable, as defined during
## the construction - see psmVariables()
rpsm2 <- reducePSMs(psm2)
rpsm2
#> Reduced PSM with 2 rows and 35 columns.
#> names(35): sequence spectrumID ... subReplacementResidue subLocation
DataFrame(rpsm2[, c("sequence", "spectrumID", "modName", "modLocation")])
#> DataFrame with 2 rows and 4 columns
#>                                                    sequence    spectrumID
#>                                                 <character>   <character>
#> controllerType=0 controllerNumber=1 scan=5490 KCNQCLKVAC... controller...
#> controllerType=0 controllerNumber=1 scan=6518 CIDRARHVEV... controller...
#>                                                     modName   modLocation
#>                                                 <character> <IntegerList>
#> controllerType=0 controllerNumber=1 scan=5490 Carbamidom...    2,5,10,...
#> controllerType=0 controllerNumber=1 scan=6518 Carbamidom...          1,28
reduced(rpsm2)
#> [1] TRUE

## ---------------------------------
## Multiple mzid files
## ---------------------------------

library(rpx)
PXD022816 <- PXDataset("PXD022816")
#> Loading PXD022816 from cache.
PXD022816
#> Project PXD022816 with 32 files
#>  
#> Resource ID BFC1 in cache in /github/home/.cache/R/rpx.
#>  [1] 'QEP2LC6_HeLa_50ng_251120_01-calib.mzID.gz' ... [32] 'checksum.txt'
#>  Use 'pxfiles(.)' to see all files.

(mzids <- pxget(PXD022816, grep("mzID", pxfiles(PXD022816))[1:2]))
#> Project PXD022816 files (32):
#>  [local]  QEP2LC6_HeLa_50ng_251120_01-calib.mzID.gz
#>  [remote] QEP2LC6_HeLa_50ng_251120_01-calib.mzML
#>  [remote] QEP2LC6_HeLa_50ng_251120_01.raw
#>  [local]  QEP2LC6_HeLa_50ng_251120_02-calib.mzID.gz
#>  [remote] QEP2LC6_HeLa_50ng_251120_02-calib.mzML
#>  [remote] QEP2LC6_HeLa_50ng_251120_02.raw
#>  [remote] QEP2LC6_HeLa_50ng_251120_03-calib.mzID.gz
#>  [remote] QEP2LC6_HeLa_50ng_251120_03-calib.mzML
#>  [remote] QEP2LC6_HeLa_50ng_251120_03.raw
#>  [remote] QEP2LC6_HeLa_50ng_251120_04-calib.mzID.gz
#>  ...
#> Loading QEP2LC6_HeLa_50ng_251120_01-calib.mzID.gz from cache.
#> Loading QEP2LC6_HeLa_50ng_251120_02-calib.mzID.gz from cache.
#> [1] "/github/home/.cache/R/rpx/90162d5fc632_QEP2LC6_HeLa_50ng_251120_01-calib.mzID.gz"
#> [2] "/github/home/.cache/R/rpx/9016626492c2_QEP2LC6_HeLa_50ng_251120_02-calib.mzID.gz"
psm <- PSM(mzids)
psm
#> PSM with 50314 rows and 31 columns.
#> names(31): sequence spectrumID ... subReplacementResidue subLocation
psmVariables(psm)
#>         spectrum          peptide          protein            decoy 
#>     "spectrumID"       "sequence" "DatabaseAccess"        "isDecoy" 
#>             rank            score              fdr 
#>           "rank"               NA               NA 

## Here, spectrum identifiers are repeated accross files
psm[grep("scan=20000", psm$spectrumID), "spectrumFile"]
#> [1] "P:\\Projects\\Morgenstern\\HF2_QC_for_the_paper\\QEP2\\2020-11-29-13-56-12\\Task1-CalibrateTask\\QEP2LC6_HeLa_50ng_251120_01-calib.mzML"
#> [2] "P:\\Projects\\Morgenstern\\HF2_QC_for_the_paper\\QEP2\\2020-11-29-13-56-12\\Task1-CalibrateTask\\QEP2LC6_HeLa_50ng_251120_02-calib.mzML"

## Let's create a new primary identifier composed of the scan
## number and the file name
psm$pkey <- paste(sub("^.+Task\\\\", "", psm$spectrumFile),
                  sub("^.+scan=", "", psm$spectrumID),
                  sep = "::")
head(psm$pkey)
#> [1] "QEP2LC6_HeLa_50ng_251120_01-calib.mzML::3426" 
#> [2] "QEP2LC6_HeLa_50ng_251120_01-calib.mzML::20165"
#> [3] "QEP2LC6_HeLa_50ng_251120_01-calib.mzML::20180"
#> [4] "QEP2LC6_HeLa_50ng_251120_01-calib.mzML::15180"
#> [5] "QEP2LC6_HeLa_50ng_251120_01-calib.mzML::10327"
#> [6] "QEP2LC6_HeLa_50ng_251120_01-calib.mzML::12894"

## the PSM is not reduced
reduced(psm, "pkey")
#> [1] FALSE
DataFrame(psm[6:7, ])
#> DataFrame with 2 rows and 32 columns
#>        sequence    spectrumID chargeState      rank passThreshold
#>     <character>   <character>   <integer> <integer>     <logical>
#> 1 SEGSSCALES... controller...           4         1          TRUE
#> 2 SEGSSCALES... controller...           4         1          TRUE
#>   experimentalMassToCharge calculatedMassToCharge  peptideRef    modNum
#>                  <numeric>              <numeric> <character> <integer>
#> 1                  796.367                796.367        P_19         2
#> 2                  796.367                796.367        P_19         2
#>     isDecoy        post         pre     start       end DatabaseAccess
#>   <logical> <character> <character> <integer> <integer>    <character>
#> 1     FALSE           I           K       220       251         Q58D62
#> 2     FALSE           I           K       220       251         Q58D62
#>   DBseqLength   DatabaseSeq DatabaseDescription scan.start.time acquisitionNum
#>     <integer>   <character>         <character>     <character>      <numeric>
#> 1         387 MNVLLLLVLC...       Q58D62|FET...       32.788864          12894
#> 2         387 MNVLLLLVLC...       Q58D62|FET...       32.788864          12894
#>     spectrumFile        idFile MetaMorpheus.score PSM.level.q.value
#>      <character>   <character>          <numeric>         <numeric>
#> 1 P:\\Project... 90162d5fc6...            31.2586                 0
#> 2 P:\\Project... 90162d5fc6...            31.2586                 0
#>   modPeptideRef       modName   modMass modLocation subOriginalResidue
#>     <character>   <character> <numeric>   <integer>        <character>
#> 1          P_19 Carbamidom...   57.0215           6                 NA
#> 2          P_19 Carbamidom...   57.0215          19                 NA
#>   subReplacementResidue subLocation          pkey
#>             <character>   <integer>   <character>
#> 1                    NA          NA QEP2LC6_He...
#> 2                    NA          NA QEP2LC6_He...

## same sequence, same spectrumID, same file
psm$sequence[6:7]
#> [1] "SEGSSCALESPGSVPVGICHGSLGEPQGNQGK" "SEGSSCALESPGSVPVGICHGSLGEPQGNQGK"
psm$pkey[6:7]
#> [1] "QEP2LC6_HeLa_50ng_251120_01-calib.mzML::12894"
#> [2] "QEP2LC6_HeLa_50ng_251120_01-calib.mzML::12894"

## different modification locations
psm$modLocation[6:7]
#> [1]  6 19

## here, we need to *explicitly* set pkey to reduce
rpsm <- reducePSMs(psm, psm$pkey)
rpsm
#> Reduced PSM with 32739 rows and 32 columns.
#> names(32): sequence spectrumID ... subLocation pkey
reduced(rpsm, "pkey")
#> [1] TRUE

## the two rows are now merged into a single one; the distinct
## modification locations are preserved.
(i <- which(rpsm$pkey == "QEP2LC6_HeLa_50ng_251120_01-calib.mzML::12894"))
#> [1] 2343
DataFrame(rpsm[i, c("sequence", "pkey", "modName", "modLocation")])
#> DataFrame with 1 row and 4 columns
#>                                                      sequence          pkey
#>                                               <CharacterList>   <character>
#> QEP2LC6_HeLa_50ng_251120_01-calib.mzML::12894   SEGSSCALES... QEP2LC6_He...
#>                                                       modName   modLocation
#>                                               <CharacterList> <IntegerList>
#> QEP2LC6_HeLa_50ng_251120_01-calib.mzML::12894   Carbamidom...          6,19

## ---------------------------------
## PSM from a data.frame
## ---------------------------------

psmdf <- data.frame(spectrum = paste0("sp", 1:10),
                    sequence = replicate(10,
                                         paste(sample(getAminoAcids()[-1, "AA"], 10),
                                               collapse = "")),
                    protein = sample(paste0("Prot", LETTERS[1:7]), 10,
                                     replace = TRUE),
                    decoy = rep(FALSE, 10),
                    rank = rep(1, 10),
                    score = runif(10))
psmdf
#>    spectrum   sequence protein decoy rank      score
#> 1       sp1 CDSKITVQHA   ProtD FALSE    1 0.41596074
#> 2       sp2 MLYHVNKFQD   ProtD FALSE    1 0.39246025
#> 3       sp3 PWIGQKYMNS   ProtD FALSE    1 0.03739433
#> 4       sp4 HDSQETICNA   ProtG FALSE    1 0.17191626
#> 5       sp5 EYDWHQVMCN   ProtF FALSE    1 0.46395538
#> 6       sp6 TLYPDAERKS   ProtC FALSE    1 0.08249084
#> 7       sp7 HEKRPWGSAC   ProtG FALSE    1 0.14586426
#> 8       sp8 CPKSGINYFV   ProtD FALSE    1 0.06580188
#> 9       sp9 SPHKDNWLVM   ProtC FALSE    1 0.63168336
#> 10     sp10 TKRQSCPHNL   ProtG FALSE    1 0.59860257

psm <- PSM(psmdf)
psm
#> PSM with 10 rows and 6 columns.
#> names(6): spectrum sequence ... rank score
psmVariables(psm)
#> spectrum  peptide  protein    decoy     rank    score      fdr 
#>       NA       NA       NA       NA       NA       NA       NA 

## no PSM variables set
try(adjacencyMatrix(psm))
#> Error in .local(object, ...) : 
#>   Please define the 'protein' and 'peptide' PSM variables.

## set PSM variables
psm <- PSM(psm, spectrum = "spectrum", peptide = "sequence",
           protein = "protein", decoy = "decoy", rank = "rank")
psm
#> PSM with 10 rows and 6 columns.
#> names(6): spectrum sequence ... rank score
psmVariables(psm)
#>   spectrum    peptide    protein      decoy       rank      score        fdr 
#> "spectrum" "sequence"  "protein"    "decoy"     "rank"         NA         NA 

adjacencyMatrix(psm)
#> 10 x 4 sparse Matrix of class "dgCMatrix"
#>            ProtD ProtG ProtF ProtC
#> CDSKITVQHA     1     .     .     .
#> MLYHVNKFQD     1     .     .     .
#> PWIGQKYMNS     1     .     .     .
#> HDSQETICNA     .     1     .     .
#> EYDWHQVMCN     .     .     1     .
#> TLYPDAERKS     .     .     .     1
#> HEKRPWGSAC     .     1     .     .
#> CPKSGINYFV     1     .     .     .
#> SPHKDNWLVM     .     .     .     1
#> TKRQSCPHNL     .     1     .     .