Skip to contents

Various data analysis functions are available for Spectra objects. These can be categorized into functions that either return a Spectra object (with the manipulated data) and functions that directly return the result from the calculation. For the former category, the data manipulations are cached in the result object's processing queue and only exectuted on-the-fly when the respective data gets extracted from the Spectra (see section The processing queue for more information).

For the second category, the calculations are directly executed and the result, usually one value per spectrum, returned. Generally, to reduce memory demand, a chunk-wise processing of the data is performed.

Usage

applyProcessing(
  object,
  f = processingChunkFactor(object),
  BPPARAM = bpparam(),
  ...
)

processingLog(x)

scalePeaks(x, by = sum, msLevel. = uniqueMsLevels(x))

# S4 method for class 'Spectra'
addProcessing(object, FUN, ..., spectraVariables = character())

# S4 method for class 'Spectra'
bin(
  x,
  binSize = 1L,
  breaks = NULL,
  msLevel. = uniqueMsLevels(x),
  FUN = sum,
  zero.rm = TRUE
)

# S4 method for class 'Spectra'
containsMz(
  object,
  mz = numeric(),
  tolerance = 0,
  ppm = 20,
  which = c("any", "all"),
  BPPARAM = bpparam()
)

# S4 method for class 'Spectra'
containsNeutralLoss(
  object,
  neutralLoss = 0,
  tolerance = 0,
  ppm = 20,
  BPPARAM = bpparam()
)

# S4 method for class 'Spectra'
entropy(object, normalized = TRUE)

# S4 method for class 'ANY'
entropy(object, ...)

# S4 method for class 'Spectra'
pickPeaks(
  object,
  halfWindowSize = 2L,
  method = c("MAD", "SuperSmoother"),
  snr = 0,
  k = 0L,
  descending = FALSE,
  threshold = 0,
  msLevel. = uniqueMsLevels(object),
  ...
)

# S4 method for class 'Spectra'
replaceIntensitiesBelow(
  object,
  threshold = min,
  value = 0,
  msLevel. = uniqueMsLevels(object)
)

# S4 method for class 'Spectra'
reset(object, ...)

# S4 method for class 'Spectra'
smooth(
  x,
  halfWindowSize = 2L,
  method = c("MovingAverage", "WeightedMovingAverage", "SavitzkyGolay"),
  msLevel. = uniqueMsLevels(x),
  ...
)

# S4 method for class 'Spectra'
spectrapply(
  object,
  FUN,
  ...,
  chunkSize = integer(),
  f = factor(),
  BPPARAM = SerialParam()
)

Arguments

object

A Spectra object.

f

For spectrapply() and applyProcessing(): factor defining how object should be splitted for eventual parallel processing. Defaults to factor() for spectrapply() hence the object is not splitted while it defaults to f = processingChunkSize(object) for applyProcessing() splitting thus the object by default into chunks depending on processingChunkSize().

BPPARAM

Parallel setup configuration. See bpparam() for more information. This is passed directly to the backendInitialize() method of the MsBackend. See also processingChunkSize() for additional information on parallel processing.

...

Additional arguments passed to internal and downstream functions.

x

A Spectra.

by

For scalePeaks(): function to calculate a single numeric from intensity values of a spectrum by which all intensities (of that spectrum) should be divided by. The default by = sum will divide intensities of each spectrum by the sum of intensities of that spectrum.

msLevel.

integer defining the MS level(s) of the spectra to which the function should be applied (defaults to all MS levels of object.

FUN

For addProcessing(): function to be applied to the peak matrix of each spectrum in object. For bin(): function to aggregate intensity values of peaks falling into the same bin. Defaults to FUN = sum thus summing up intensities. For spectrapply() and chunkapply(): function to be applied to each individual or each chunk of Spectra.

spectraVariables

For addProcessing(): character with additional spectra variables that should be passed along to the function defined with FUN. See function description for details.

binSize

For bin(): numeric(1) defining the size for the m/z bins. Defaults to binSize = 1.

breaks

For bin(): numeric defining the m/z breakpoints between bins.

zero.rm

For bin(): logical(1) indicating whether to remove bins with zero intensity. Defaults to TRUE, meaning the function will discard bins created with an intensity of 0 to enhance memory efficiency.

mz

For containsMz(): numeric with the m/z value(s) of the mass peaks to check.

tolerance

For containsMz() and neutralLoss(): numeric(1) allowing to define a constant maximal accepted difference between m/z values for peaks to be matched.

ppm

For containsMz() and neutralLoss(): numeric(1) defining a relative, m/z-dependent, maximal accepted difference between m/z values for peaks to be matched.

which

For containsMz(): either "any" or "all" defining whether any (the default) or all provided mz have to be present in the spectrum.

neutralLoss

for containsNeutralLoss(): numeric(1) defining the value which should be subtracted from the spectrum's precursor m/z.

normalized

for entropy(): logical(1) whether the normalized entropy should be calculated (default). See also nentropy() for details.

halfWindowSize

For pickPeaks(): integer(1), used in the identification of the mass peaks: a local maximum has to be the maximum in the window from (i - halfWindowSize):(i + halfWindowSize). For smooth(): integer(1), used in the smoothing algorithm, the window reaches from (i - halfWindowSize):(i + halfWindowSize).

method

For pickPeaks(): character(1), the noise estimators that should be used, currently the the Median Absolute Deviation (method = "MAD") and Friedman's Super Smoother (method = "SuperSmoother") are supported. For smooth(): character(1), the smoothing function that should be used, currently, the Moving-Average- (method = "MovingAverage"), Weighted-Moving-Average- (method = "WeightedMovingAverage"), Savitzky-Golay-Smoothing (method = "SavitzkyGolay") are supported.

snr

For pickPeaks(): double(1) defining the Signal-to-Noise-Ratio. The intensity of a local maximum has to be higher than snr * noise to be considered as peak.

k

For pickPeaks(): integer(1), number of values left and right of the peak that should be considered in the weighted mean calculation.

descending

For pickPeaks(): logical, if TRUE just values betwee the nearest valleys around the peak centroids are used.

threshold

For pickPeaks(): a numeric(1) defining the proportion of the maximal peak intensity. Only values above the threshold are used for the weighted mean calculation. For replaceIntensitiesBelow(): a numeric(1) defining the threshold or a function to calculate the threshold for each spectrum on its intensity values. Defaults to threshold = min.

value

For replaceIntensitiesBelow(): numeric(1) defining the value with which intensities should be replaced with.

chunkSize

For spectrapply(): size of the chunks into which the Spectra should be split. This parameter overrides parameters f and BPPARAM.

Value

See the documentation of the individual functions for a description of the return value.

Data analysis methods returning a Spectra

The methods listed here return a Spectra object as a result.

  • addProcessing(): adds an arbitrary function that should be applied to the peaks matrix of every spectrum in object. The function (can be passed with parameter FUN) is expected to take a peaks matrix as input and to return a peaks matrix. A peaks matrix is a numeric matrix with two columns, the first containing the m/z values of the peaks and the second the corresponding intensities. The function has to have ... in its definition. Additional arguments can be passed with .... With parameter spectraVariables it is possible to define additional spectra variables from object that should be passed to the function FUN. These will be passed by their name (e.g. specifying spectraVariables = "precursorMz" will pass the spectra's precursor m/z as a parameter named precursorMz to the function. The only exception is the spectra's MS level, these will be passed to the function as a parameter called spectrumMsLevel (i.e. with spectraVariables = "msLevel" the MS levels of each spectrum will be submitted to the function as a parameter called spectrumMsLevel). Examples are provided in the package vignette.

  • bin(): aggregates individual spectra into discrete (m/z) bins. Binning is performed only on spectra of the specified MS level(s) (parameter msLevel, by default all MS levels of x). The bins can be defined with parameter breaks which by default are equally sized bins, with size being defined by parameter binSize, from the minimal to the maximal m/z of all spectra (of MS level msLevel) within x. The same bins are used for all spectra in x. All intensity values for peaks falling into the same bin are aggregated using the function provided with parameter FUN (defaults to FUN = sum, i.e. all intensities are summed up). Note that the binning operation is applied to the peak data on-the-fly upon data access and it is possible to revert the operation with the reset() function (see description of reset() below).

  • countIdentifications: counts the number of identifications each scan has led to. See countIdentifications() for more details.

  • pickPeaks(): picks peaks on individual spectra using a moving window-based approach (window size = 2 * halfWindowSize). For noisy spectra there are currently two different noise estimators available, the Median Absolute Deviation (method = "MAD") and Friedman's Super Smoother (method = "SuperSmoother"), as implemented in the MsCoreUtils::noise(). The method supports also to optionally refine the m/z value of the identified centroids by considering data points that belong (most likely) to the same mass peak. Therefore the m/z value is calculated as an intensity weighted average of the m/z values within the peak region. The peak region is defined as the m/z values (and their respective intensities) of the 2 * k closest signals to the centroid or the closest valleys (descending = TRUE) in the 2 * k region. For the latter the k has to be chosen general larger. See MsCoreUtils::refineCentroids() for details. If the ratio of the signal to the highest intensity of the peak is below threshold it will be ignored for the weighted average.

  • replaceIntensitiesBelow(): replaces intensities below a specified threshold with the provided value. Parameter threshold can be either a single numeric value or a function which is applied to all non-NA intensities of each spectrum to determine a threshold value for each spectrum. The default is threshold = min which replaces all values which are <= the minimum intensity in a spectrum with value (the default for value is 0). Note that the function specified with threshold is expected to have a parameter na.rm since na.rm = TRUE will be passed to the function. If the spectrum is in profile mode, ranges of successive non-0 peaks <= threshold are set to 0. Parameter msLevel. allows to apply this to only spectra of certain MS level(s).

  • scalePeaks(): scales intensities of peaks within each spectrum depending on parameter by. With by = sum (the default) peak intensities are divided by the sum of peak intensities within each spectrum. The sum of intensities is thus 1 for each spectrum after scaling. Parameter msLevel. allows to apply the scaling of spectra of a certain MS level. By default (msLevel. = uniqueMsLevels(x)) intensities for all spectra will be scaled.

  • smooth(): smooths individual spectra using a moving window-based approach (window size = 2 * halfWindowSize). Currently, the Moving-Average- (method = "MovingAverage"), Weighted-Moving-Average- (method = "WeightedMovingAverage"), weights depending on the distance of the center and calculated 1/2^(-halfWindowSize:halfWindowSize)) and Savitzky-Golay-Smoothing (method = "SavitzkyGolay") are supported. For details how to choose the correct halfWindowSize please see MsCoreUtils::smooth().

Data analysis methods returning the result from the calculation

The functions listed in this section return immediately the result from the calculation. To reduce memory demand (and allow parallel processing) the calculations a chunk-wise processing is generally performed.

  • chunkapply(): apply an arbitrary function to chunks of spectra. See chunkapply() for details and examples.

  • containsMz(): checks for each of the spectra whether they contain mass peaks with an m/z equal to mz (given acceptable difference as defined by parameters tolerance and ppm - see common() for details). Parameter which allows to define whether any (which = "any", the default) or all (which = "all") of the mz have to match. The function returns NA if mz is of length 0 or is NA.

  • containsNeutralLoss(): checks for each spectrum in object if it has a peak with an m/z value equal to its precursor m/z - neutralLoss (given acceptable difference as defined by parameters tolerance and ppm). Returns NA for MS1 spectra (or spectra without a precursor m/z).

  • entropy(): calculates the entropy of each spectra based on the metrics suggested by Li et al. (https://doi.org/10.1038/s41592-021-01331-z). See also nentropy() in the MsCoreUtils package for details.

  • estimatePrecursorIntensity(): defines the precursor intensities for MS2 spectra using the intensity of the matching MS1 peak from the closest MS1 spectrum (i.e. the last MS1 spectrum measured before the respective MS2 spectrum). With method = "interpolation" it is also possible to calculate the precursor intensity based on an interpolation of intensity values (and retention times) of the matching MS1 peaks from the previous and next MS1 spectrum. See estimatePrecursorIntensity() for examples and more details.

  • estimatePrecursorMz(): for DDA data: allows to estimate a fragment spectra's precursor m/z based on the reported precursor m/z and the data from the previous MS1 spectrum. See estimatePrecursorMz() for details.

  • neutralLoss(): calculates neutral loss spectra for fragment spectra. See neutralLoss() for detailed documentation.

  • spectrapply(): applies a given function to each individual spectrum or sets of a Spectra object. By default, the Spectra is split into individual spectra (i.e. Spectra of length 1) and the function FUN is applied to each of them. An alternative splitting can be defined with parameter f. Parameters for FUN can be passed using .... The returned result and its order depend on the function FUN and how object is split (hence on f, if provided). Parallel processing is supported and can be configured with parameter BPPARAM, is however only suggested for computational intense FUN. As an alternative to the (eventual parallel) processing of the full Spectra, spectrapply() supports also a chunk-wise processing. For this, parameter chunkSize needs to be specified. object is then split into chunks of size chunkSize which are then (stepwise) processed by FUN. This guarantees a lower memory demand (especially for on-disk backends) since only the data for one chunk needs to be loaded into memory in each iteration. Note that by specifying chunkSize, parameters f and BPPARAM will be ignored. See also chunkapply() above or examples below for details on chunk-wise processing.

The processing queue

Operations that modify mass peak data, i.e. the m/z and intensity values of a Spectra are generally not applied immediately to the data but are cached within the object's processing queue. These operations are then applied to the data only upon request, for example when m/z and/or intensity values are extracted. This lazy execution guarantees that the same functionality can be applied to any Spectra object, regardless of the type of backend that is used. Thus, data manipulation operations can also be applied to data that is read only. As a side effect, this enables also to undo operations using the reset() function.

Functions related to the processing queue are:

  • applyProcessing(): for Spectra objects that use a writeable backend only: apply all steps from the lazy processing queue to the peak data and write it back to the data storage. Parameter f allows to specify how object should be split for parallel processing. This should either be equal to the dataStorage, or f = rep(1, length(object)) to disable parallel processing alltogether. Other partitionings might result in errors (especially if a MsBackendHdf5Peaks backend is used).

  • processingLog(): returns a character vector with the processing log messages.

  • reset(): restores the data to its original state (as much as possible): removes any processing steps from the lazy processing queue and calls reset() on the backend which, depending on the backend, can also undo e.g. data filtering operations. Note that a reset*( call after applyProcessing() will not have any effect. See examples below for more information.

See also

Author

Sebastian Gibb, Johannes Rainer, Laurent Gatto, Philippine Louail, Nir Shahaf, Mar Garcia-Aloy

Examples


## Load a `Spectra` object with LC-MS/MS data.
fl <- system.file("TripleTOF-SWATH", "PestMix1_DDA.mzML",
    package = "msdata")
sps_dda <- Spectra(fl)
sps_dda
#> MSn data (Spectra) with 7602 spectra in a MsBackendMzR backend:
#>        msLevel     rtime scanIndex
#>      <integer> <numeric> <integer>
#> 1            1     0.231         1
#> 2            1     0.351         2
#> 3            1     0.471         3
#> 4            1     0.591         4
#> 5            1     0.711         5
#> ...        ...       ...       ...
#> 7598         1   899.491      7598
#> 7599         1   899.613      7599
#> 7600         1   899.747      7600
#> 7601         1   899.872      7601
#> 7602         1   899.993      7602
#>  ... 33 more variables/columns.
#> 
#> file(s):
#> PestMix1_DDA.mzML


##  --------  FUNCTIONS RETURNING A SPECTRA  --------

## Replace peak intensities below 40 with a value of 1
sps_mod <- replaceIntensitiesBelow(sps_dda, threshold = 20, value = 1)
sps_mod
#> MSn data (Spectra) with 7602 spectra in a MsBackendMzR backend:
#>        msLevel     rtime scanIndex
#>      <integer> <numeric> <integer>
#> 1            1     0.231         1
#> 2            1     0.351         2
#> 3            1     0.471         3
#> 4            1     0.591         4
#> 5            1     0.711         5
#> ...        ...       ...       ...
#> 7598         1   899.491      7598
#> 7599         1   899.613      7599
#> 7600         1   899.747      7600
#> 7601         1   899.872      7601
#> 7602         1   899.993      7602
#>  ... 33 more variables/columns.
#> 
#> file(s):
#> PestMix1_DDA.mzML
#> Lazy evaluation queue: 1 processing step(s)
#> Processing:
#>  Signal <= 20 in MS level(s) 1, 2 set to 0 [Fri Oct 25 07:13:02 2024] 

## Get the intensities of the first spectrum before and after the
## operation
intensity(sps_dda[1])
#> NumericList of length 1
#> [[1]] 0.0307632219046354 0.163443520665169 ... 0.507792055606842
intensity(sps_mod[1])
#> NumericList of length 1
#> [[1]] 1 1 1 1 1 1 88.7230834960938 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1 1 1 1

## Remove all peaks with an intensity below 5.
sps_mod <- filterIntensity(sps_dda, intensity = c(5, Inf))

intensity(sps_mod)
#> NumericList of length 7602
#> [[1]] 88.7230834960938 6.28782653808594
#> [[2]] 90.9452285766602 6.51183843612671
#> [[3]] 117.253837585449 6.71664762496948
#> [[4]] 75.9008331298828 8.15607166290283
#> [[5]] 63.7168960571289 8.26729297637939 6.08404684066772
#> [[6]] 81.0469970703125 6.34799957275391
#> [[7]] 68.0150375366211 7.7239465713501 5.05049753189087
#> [[8]] 84.4253540039062 7.3393931388855
#> [[9]] intensity=111.353569030762
#> [[10]] 84.0783767700195 8.68693542480469 6.3865818977356
#> ...
#> <7592 more elements>

## In addition it is possible to pass a function to `filterIntensity()`: in
## the example below we want to keep only peaks that have an intensity which
## is larger than one third of the maximal peak intensity in that spectrum.
keep_peaks <- function(x, prop = 3) {
    x > max(x, na.rm = TRUE) / prop
}
sps_mod <- filterIntensity(sps_dda, intensity = keep_peaks)
intensity(sps_mod)
#> NumericList of length 7602
#> [[1]] intensity=88.7230834960938
#> [[2]] intensity=90.9452285766602
#> [[3]] intensity=117.253837585449
#> [[4]] intensity=75.9008331298828
#> [[5]] intensity=63.7168960571289
#> [[6]] intensity=81.0469970703125
#> [[7]] intensity=68.0150375366211
#> [[8]] intensity=84.4253540039062
#> [[9]] intensity=111.353569030762
#> [[10]] intensity=84.0783767700195
#> ...
#> <7592 more elements>

## We can also change the proportion by simply passing the `prop` parameter
## to the function. To keep only peaks that have an intensity which is
## larger than half of the maximum intensity:
sps_mod <- filterIntensity(sps_dda, intensity = keep_peaks, prop = 2)
intensity(sps_mod)
#> NumericList of length 7602
#> [[1]] intensity=88.7230834960938
#> [[2]] intensity=90.9452285766602
#> [[3]] intensity=117.253837585449
#> [[4]] intensity=75.9008331298828
#> [[5]] intensity=63.7168960571289
#> [[6]] intensity=81.0469970703125
#> [[7]] intensity=68.0150375366211
#> [[8]] intensity=84.4253540039062
#> [[9]] intensity=111.353569030762
#> [[10]] intensity=84.0783767700195
#> ...
#> <7592 more elements>

## With the `scalePeaks()` function we can alternatively scale the
## intensities of mass peaks per spectrum to relative intensities. This
## is specifically useful for fragment (MS2) spectra. We below thus
## scale the intensities per spectrum by the total sum of intensities
## (such that the sum of all intensities per spectrum is 1).
## Below we scale the intensities of all MS2 spectra in our data set.
sps_mod <- scalePeaks(sps_dda, msLevel = 2L)

## MS1 spectra were not affected
sps_mod |>
    filterMsLevel(1L) |>
    intensity()
#> NumericList of length 4627
#> [[1]] 0.0307632219046354 0.163443520665169 ... 0.507792055606842
#> [[2]] 0.124385602772236 0.306980639696121 ... 0.752154946327209
#> [[3]] 0.140656530857086 0.194816112518311 ... 0.455461025238037
#> [[4]] 0.0389336571097374 0.357547700405121 ... 0.478326231241226
#> [[5]] 0.124386593699455 0.054143700748682 ... 0.251276850700378
#> [[6]] 0.0940475389361382 0.247442871332169 ... 0.10762557387352
#> [[7]] 0.0940475389361382 0.17366424202919 ... 0.355754435062408
#> [[8]] 0.0389340370893478 0.116887390613556 ... 0.40066459774971
#> [[9]] 0.0307626128196716 0.0626986622810364 ... 0.359330594539642
#> [[10]] 0.217585012316704 0.333028763532639 ... 0.297511428594589
#> ...
#> <4617 more elements>

## Intensities of MS2 spectra were scaled
sps_mod |>
    filterMsLevel(2L) |>
    intensity()
#> NumericList of length 2975
#> [[1]] 0.237546288845328 0.478541149367473 0.283912561787199
#> [[2]] 0.137308998224213 0.0223434223564616 0.840347579419325
#> [[3]] 0.406266967176935 0.53879813438082 0.0549348984422444
#> [[4]] 0.280229322504475 0.381273738198204 0.338496939297321
#> [[5]] intensity=1
#> [[6]] 0.104432137389865 0.0285431704350093 ... 0.0402209771615151
#> [[7]] 0.0386159813711874 0.346130168120392 ... 0.228058722675167
#> [[8]] numeric(0)
#> [[9]] 0.210018635385678 0.216171000981623 ... 0.0462104568765319
#> [[10]] 0.0555197043853142 0.722227534151142 0.166680504527357 0.0555722569361873
#> ...
#> <2965 more elements>

## Since data manipulation operations are by default not directly applied to
## the data but only cached in the internal processing queue, it is also
## possible to remove these data manipulations with the `reset()` function:
tmp <- reset(sps_mod)
tmp
#> MSn data (Spectra) with 7602 spectra in a MsBackendMzR backend:
#>        msLevel     rtime scanIndex
#>      <integer> <numeric> <integer>
#> 1            1     0.231         1
#> 2            1     0.351         2
#> 3            1     0.471         3
#> 4            1     0.591         4
#> 5            1     0.711         5
#> ...        ...       ...       ...
#> 7598         1   899.491      7598
#> 7599         1   899.613      7599
#> 7600         1   899.747      7600
#> 7601         1   899.872      7601
#> 7602         1   899.993      7602
#>  ... 33 more variables/columns.
#> 
#> file(s):
#> PestMix1_DDA.mzML
#> Processing:
#>  Scale peak intensities in spectra of MS level(s) 2. [Fri Oct 25 07:13:05 2024]
#>  Reset object. [Fri Oct 25 07:13:06 2024] 
lengths(sps_dda) |> head()
#> [1] 223 211 227 210 220 228
lengths(sps_mod) |> head()
#> [1] 223 211 227 210 220 228
lengths(tmp) |> head()
#> [1] 223 211 227 210 220 228

## Data manipulation operations cached in the processing queue can also be
## applied to the mass peaks data with the `applyProcessing()` function, if
## the `Spectra` uses a backend that supports that (i.e. allows replacing
## the mass peaks data). Below we first change the backend to a
## `MsBackendMemory()` and then use the `applyProcessing()` to modify the
## mass peaks data
sps_dda <- setBackend(sps_dda, MsBackendMemory())
sps_mod <- filterIntensity(sps_dda, intensity = c(5, Inf))
sps_mod <- applyProcessing(sps_mod)
sps_mod
#> MSn data (Spectra) with 7602 spectra in a MsBackendMemory backend:
#>        msLevel     rtime scanIndex
#>      <integer> <numeric> <integer>
#> 1            1     0.231         1
#> 2            1     0.351         2
#> 3            1     0.471         3
#> 4            1     0.591         4
#> 5            1     0.711         5
#> ...        ...       ...       ...
#> 7598         1   899.491      7598
#> 7599         1   899.613      7599
#> 7600         1   899.747      7600
#> 7601         1   899.872      7601
#> 7602         1   899.993      7602
#>  ... 33 more variables/columns.
#> Processing:
#>  Switch backend from MsBackendMzR to MsBackendMemory [Fri Oct 25 07:13:09 2024]
#>  Remove peaks with intensities outside [5, Inf] in spectra of MS level(s) 1, 2. [Fri Oct 25 07:13:09 2024]
#>  Applied processing queue with 1 steps [Fri Oct 25 07:13:09 2024] 

## While we can't *undo* this filtering operation now using the `reset()`
## function, accessing the data would now be faster, because the operation
## does no longer to be applied to the original data before returning to the
## user.


##  --------  FUNCTIONS RETURNING THE RESULT  --------

## With the `spectrapply()` function it is possible to apply an
## arbitrary function to each spectrum in a Spectra.
## In the example below we calculate the mean intensity for each spectrum
## in a subset of the sciex_im data. Note that we can access all variables
## of each individual spectrum either with the `$` operator or the
## corresponding method.
res <- spectrapply(sps_dda[1:20], FUN = function(x) mean(x$intensity[[1]]))
head(res)
#> $`1`
#> [1] 0.9623952
#> 
#> $`2`
#> [1] 1.016938
#> 
#> $`3`
#> [1] 1.056198
#> 
#> $`4`
#> [1] 0.9000712
#> 
#> $`5`
#> [1] 0.8756414
#> 
#> $`6`
#> [1] 0.9105883
#> 

## As an alternative, applying a function `FUN` to a `Spectra` can be
## performed *chunk-wise*. The advantage of this is, that only the data for
## one chunk at a time needs to be loaded into memory reducing the memory
## demand. This type of processing can be performed by specifying the size
## of the chunks (i.e. number of spectra per chunk) with the `chunkSize`
## parameter
spectrapply(sps_dda[1:20], lengths, chunkSize = 5L)
#>  [1] 223 211 227 210 220 228 201 215 214 211 208 217 219 190 201 195 196 208 233
#> [20] 224

## Precursor intensity estimation. Some manufacturers don't report the
## precursor intensity for MS2 spectra:
sps_dda |>
    filterMsLevel(2L) |>
    precursorIntensity()
#>    [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>   [38] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>   [75] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [112] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [149] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [186] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [223] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [260] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [297] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [334] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [371] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [408] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [445] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [482] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [519] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [556] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [593] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [630] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [667] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [704] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [741] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [778] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [815] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [852] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [889] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [926] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [963] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1000] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1037] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1074] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1111] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1148] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1185] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1222] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1259] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1296] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1333] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1370] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1407] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1444] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1481] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1518] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1555] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1592] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1629] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1666] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1703] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1740] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1777] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1814] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1851] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1888] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1925] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1962] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [1999] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2036] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2073] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2110] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2147] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2184] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2221] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2258] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2295] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2332] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2369] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2406] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2443] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2480] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2517] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2554] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2591] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2628] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2665] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2702] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2739] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2776] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2813] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2850] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2887] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2924] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [2961] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## This intensity can however be estimated from the previously measured
## MS1 scan with the `estimatePrecursorIntensity()` function:
pi <- estimatePrecursorIntensity(sps_dda)

## This function returned the result as a `numeric` vector with one
## value per spectrum:
pi
#>    [1]           NA           NA           NA           NA           NA
#>    [6]           NA           NA           NA           NA           NA
#>   [11]           NA           NA           NA           NA           NA
#>   [16]           NA           NA           NA           NA           NA
#>   [21]           NA           NA           NA           NA           NA
#>   [26]           NA           NA           NA           NA           NA
#>   [31]           NA           NA           NA           NA           NA
#>   [36]           NA           NA           NA           NA           NA
#>   [41]           NA           NA           NA           NA           NA
#>   [46]           NA           NA           NA           NA           NA
#>   [51]           NA           NA           NA           NA           NA
#>   [56]           NA           NA    0.2562894           NA           NA
#>   [61]           NA           NA           NA           NA           NA
#>   [66]           NA           NA           NA           NA           NA
#>   [71]           NA           NA           NA           NA           NA
#>   [76]           NA           NA           NA           NA           NA
#>   [81]           NA           NA           NA           NA           NA
#>   [86]           NA           NA           NA           NA           NA
#>   [91]           NA           NA           NA           NA           NA
#>   [96]           NA           NA           NA           NA           NA
#>  [101]           NA           NA           NA           NA           NA
#>  [106]    0.6533012           NA           NA           NA           NA
#>  [111]           NA           NA           NA           NA           NA
#>  [116]           NA           NA           NA           NA           NA
#>  [121]           NA           NA           NA           NA           NA
#>  [126]           NA           NA           NA           NA           NA
#>  [131]           NA           NA           NA           NA           NA
#>  [136]           NA           NA           NA           NA           NA
#>  [141]           NA           NA           NA           NA           NA
#>  [146]           NA           NA           NA           NA           NA
#>  [151]           NA           NA           NA           NA           NA
#>  [156]           NA           NA           NA           NA           NA
#>  [161]           NA           NA           NA           NA           NA
#>  [166]           NA           NA           NA           NA           NA
#>  [171]           NA           NA           NA           NA           NA
#>  [176]           NA           NA           NA           NA           NA
#>  [181]           NA           NA           NA           NA           NA
#>  [186]    0.9115737           NA           NA           NA           NA
#>  [191]           NA           NA           NA           NA           NA
#>  [196]           NA           NA           NA           NA           NA
#>  [201]    2.0881963           NA           NA           NA           NA
#>  [206]           NA           NA           NA           NA           NA
#>  [211]           NA           NA           NA           NA           NA
#>  [216]           NA           NA           NA    0.4161463           NA
#>  [221]           NA           NA           NA           NA           NA
#>  [226]           NA           NA           NA           NA           NA
#>  [231]           NA           NA           NA           NA           NA
#>  [236]           NA           NA           NA           NA           NA
#>  [241]           NA    1.6393325           NA           NA           NA
#>  [246]           NA           NA           NA           NA           NA
#>  [251]           NA           NA           NA           NA           NA
#>  [256]           NA           NA           NA           NA           NA
#>  [261]           NA    1.9403350    0.2138104           NA           NA
#>  [266]           NA           NA           NA           NA           NA
#>  [271]           NA           NA           NA           NA           NA
#>  [276]           NA    2.2869656           NA           NA           NA
#>  [281]           NA           NA           NA           NA           NA
#>  [286]           NA           NA           NA           NA    0.3581794
#>  [291]           NA           NA           NA           NA           NA
#>  [296]           NA           NA    1.2965702           NA           NA
#>  [301]           NA           NA           NA           NA           NA
#>  [306]           NA           NA           NA           NA           NA
#>  [311]           NA           NA           NA           NA           NA
#>  [316]           NA           NA           NA           NA           NA
#>  [321]           NA           NA           NA           NA           NA
#>  [326]           NA    7.1932635           NA    1.7952728           NA
#>  [331]           NA           NA    1.7991002    4.6187558           NA
#>  [336]    2.3082116           NA           NA    2.1572299    7.6883049
#>  [341]           NA           NA           NA           NA           NA
#>  [346]           NA           NA           NA           NA           NA
#>  [351]           NA           NA           NA           NA    0.6671617
#>  [356]           NA           NA           NA           NA           NA
#>  [361]           NA           NA           NA           NA           NA
#>  [366]           NA           NA           NA    1.3682123    1.7227559
#>  [371]           NA           NA    0.8182324           NA           NA
#>  [376]           NA    1.3030148           NA           NA           NA
#>  [381]           NA           NA           NA           NA           NA
#>  [386]    0.4186687           NA           NA           NA           NA
#>  [391]           NA           NA           NA           NA           NA
#>  [396]           NA           NA           NA           NA           NA
#>  [401]           NA           NA           NA           NA           NA
#>  [406]           NA           NA           NA           NA           NA
#>  [411]           NA           NA           NA           NA           NA
#>  [416]           NA           NA           NA           NA           NA
#>  [421]    0.4893252           NA           NA           NA           NA
#>  [426]           NA           NA           NA           NA           NA
#>  [431]           NA           NA           NA           NA           NA
#>  [436]           NA           NA           NA           NA           NA
#>  [441]           NA           NA           NA           NA           NA
#>  [446]           NA           NA           NA           NA           NA
#>  [451]           NA           NA           NA           NA           NA
#>  [456]           NA           NA           NA           NA           NA
#>  [461]           NA    0.6470237           NA           NA           NA
#>  [466]           NA           NA           NA           NA           NA
#>  [471]           NA           NA           NA           NA           NA
#>  [476]           NA           NA           NA           NA           NA
#>  [481]           NA           NA           NA           NA           NA
#>  [486]           NA           NA           NA           NA           NA
#>  [491]           NA           NA           NA           NA           NA
#>  [496]           NA           NA           NA           NA           NA
#>  [501]           NA           NA           NA           NA           NA
#>  [506]           NA           NA           NA           NA           NA
#>  [511]           NA           NA           NA           NA           NA
#>  [516]           NA           NA           NA           NA           NA
#>  [521]           NA           NA           NA           NA           NA
#>  [526]           NA           NA           NA           NA           NA
#>  [531]           NA           NA           NA           NA           NA
#>  [536]           NA           NA           NA           NA           NA
#>  [541]           NA           NA           NA           NA           NA
#>  [546]           NA           NA           NA    1.2660308           NA
#>  [551]           NA           NA           NA           NA           NA
#>  [556]           NA           NA           NA           NA    0.3448766
#>  [561]           NA           NA           NA           NA           NA
#>  [566]           NA           NA           NA           NA           NA
#>  [571]           NA           NA           NA           NA           NA
#>  [576]           NA           NA           NA           NA           NA
#>  [581]           NA           NA           NA           NA           NA
#>  [586]           NA           NA           NA           NA           NA
#>  [591]           NA           NA           NA           NA           NA
#>  [596]           NA           NA           NA           NA           NA
#>  [601]           NA           NA           NA           NA           NA
#>  [606]    1.0501561           NA           NA           NA    1.0818608
#>  [611]           NA    0.1523102           NA    1.6358998           NA
#>  [616]           NA    1.0994979           NA    2.0477426    0.9073558
#>  [621]           NA           NA    0.5244763           NA    2.2316427
#>  [626]           NA    2.6152663           NA           NA           NA
#>  [631]    1.7466167    1.7643924           NA    1.0328368    2.0097375
#>  [636]           NA           NA           NA           NA           NA
#>  [641]           NA           NA           NA           NA           NA
#>  [646]           NA           NA           NA           NA           NA
#>  [651]           NA           NA           NA           NA           NA
#>  [656]    0.3149102           NA           NA           NA           NA
#>  [661]           NA           NA           NA           NA           NA
#>  [666]           NA           NA           NA           NA           NA
#>  [671]           NA    0.5953222           NA           NA           NA
#>  [676]    0.8350294           NA    1.0704968           NA           NA
#>  [681]           NA           NA           NA    1.3077880           NA
#>  [686]           NA           NA    1.5747164           NA           NA
#>  [691]           NA           NA           NA           NA           NA
#>  [696]           NA           NA           NA           NA           NA
#>  [701]           NA           NA           NA           NA           NA
#>  [706]           NA    0.3147899           NA           NA           NA
#>  [711]           NA           NA           NA           NA           NA
#>  [716]           NA           NA           NA           NA           NA
#>  [721]           NA    0.4084390           NA           NA           NA
#>  [726]           NA           NA           NA           NA           NA
#>  [731]           NA           NA           NA           NA           NA
#>  [736]           NA           NA           NA           NA    0.4539037
#>  [741]           NA    0.9779218           NA    2.4162381           NA
#>  [746]    6.3833795           NA    2.8862731    1.2910393   10.6581869
#>  [751]           NA    1.4951602    3.7959058    2.8722730           NA
#>  [756]    2.4529448    5.3233647    3.5772564    4.4303422           NA
#>  [761]    2.9447591    2.1176453    5.0967083    3.3420610           NA
#>  [766]    2.4258153    0.8650878    7.3779054    6.8362355           NA
#>  [771]    2.1940181    0.7469152    2.0079441    6.3011317   10.4023485
#>  [776]    3.3065796           NA    2.3813672    1.3428380    4.0137057
#>  [781]    1.4098256    2.4288177    1.3962808    7.4319925           NA
#>  [786]   20.5047512    0.9047846    1.3858606    2.8306339    3.7321482
#>  [791]    2.8828564    5.5602937           NA  115.1193542    2.0473588
#>  [796]    4.9510341           NA  118.5648346    2.0066054    2.9266124
#>  [801]    2.4156189    4.2713437           NA           NA           NA
#>  [806]           NA           NA           NA    0.2551613           NA
#>  [811]    2.6899714    5.8423100   11.0782356           NA           NA
#>  [816]    0.8772338           NA    2.3091309           NA           NA
#>  [821]           NA           NA           NA           NA           NA
#>  [826]           NA           NA    3.4256361           NA           NA
#>  [831]           NA           NA    3.7716985           NA           NA
#>  [836]           NA           NA           NA           NA           NA
#>  [841]           NA           NA           NA           NA           NA
#>  [846]           NA           NA           NA           NA           NA
#>  [851]           NA           NA           NA           NA           NA
#>  [856]           NA           NA           NA           NA           NA
#>  [861]           NA           NA           NA           NA           NA
#>  [866]           NA           NA           NA    1.5463245           NA
#>  [871]           NA           NA           NA           NA           NA
#>  [876]           NA           NA           NA    1.8332181           NA
#>  [881]           NA           NA           NA           NA           NA
#>  [886]           NA           NA           NA           NA           NA
#>  [891]           NA           NA           NA           NA           NA
#>  [896]           NA           NA           NA           NA           NA
#>  [901]           NA           NA           NA           NA           NA
#>  [906]           NA           NA           NA           NA           NA
#>  [911]    1.1230040    3.6158812           NA           NA           NA
#>  [916]           NA           NA           NA    1.1808953           NA
#>  [921]           NA           NA           NA           NA           NA
#>  [926]    1.2916937           NA           NA           NA           NA
#>  [931]           NA           NA           NA           NA           NA
#>  [936]           NA    3.6537952           NA           NA           NA
#>  [941]           NA           NA           NA           NA           NA
#>  [946]    1.9253193           NA           NA    6.6556292           NA
#>  [951]           NA           NA           NA           NA           NA
#>  [956]           NA           NA           NA           NA           NA
#>  [961]           NA           NA           NA           NA           NA
#>  [966]           NA           NA           NA           NA           NA
#>  [971]           NA           NA           NA           NA           NA
#>  [976]           NA           NA           NA           NA           NA
#>  [981]           NA    2.8096755    0.4722714           NA           NA
#>  [986]           NA    1.5738993           NA    3.1981614           NA
#>  [991]    2.3436296           NA    1.1402670           NA    4.2488189
#>  [996]    5.5579276    1.3360999           NA    1.4311922  165.9235382
#> [1001]    1.0471303    2.2803576    2.3772638    1.4516939    2.6042576
#> [1006]           NA    1.4513292  110.1937103    1.6985731           NA
#> [1011]    7.4143949    2.9037418    4.3727541           NA    2.5551207
#> [1016]    3.4643288    3.0462031    5.5572038    5.8211880    3.4240117
#> [1021]    3.9230976           NA  326.0313110    2.8209546    4.4502177
#> [1026]   45.2657852    2.6507335    2.4535000    5.7406173    5.1763091
#> [1031]           NA    1.5400567    1.0795214    1.5230681    3.4662752
#> [1036]    4.3179688           NA    0.7036181           NA           NA
#> [1041]           NA    3.9843678           NA    3.7730997           NA
#> [1046]           NA           NA    0.8382843           NA           NA
#> [1051]           NA           NA    0.5566598           NA           NA
#> [1056]           NA           NA           NA           NA           NA
#> [1061]           NA    0.8787179           NA           NA    0.4405660
#> [1066]           NA           NA           NA           NA           NA
#> [1071]           NA           NA           NA           NA           NA
#> [1076]           NA           NA           NA           NA           NA
#> [1081]           NA           NA           NA           NA           NA
#> [1086]           NA           NA    2.2968674           NA    0.4199017
#> [1091]           NA           NA           NA           NA           NA
#> [1096]           NA           NA           NA           NA           NA
#> [1101]           NA           NA           NA           NA           NA
#> [1106]           NA           NA           NA           NA           NA
#> [1111]           NA           NA           NA           NA           NA
#> [1116]           NA           NA           NA    0.9166892           NA
#> [1121]           NA           NA           NA    3.8255417           NA
#> [1126]           NA           NA           NA           NA           NA
#> [1131]           NA           NA           NA           NA           NA
#> [1136]           NA           NA           NA           NA           NA
#> [1141]           NA           NA           NA           NA           NA
#> [1146]           NA           NA           NA           NA           NA
#> [1151]           NA    0.5752081           NA           NA           NA
#> [1156]           NA           NA           NA           NA           NA
#> [1161]           NA           NA           NA           NA           NA
#> [1166]           NA           NA           NA           NA           NA
#> [1171]           NA           NA           NA           NA           NA
#> [1176]           NA           NA           NA           NA           NA
#> [1181]           NA           NA           NA           NA           NA
#> [1186]           NA           NA           NA    0.5180702           NA
#> [1191]           NA           NA           NA           NA           NA
#> [1196]           NA           NA           NA           NA           NA
#> [1201]           NA           NA           NA           NA    1.5857564
#> [1206]           NA           NA    1.6556677           NA           NA
#> [1211]           NA           NA           NA           NA           NA
#> [1216]           NA           NA           NA           NA           NA
#> [1221]           NA           NA           NA           NA    0.5855740
#> [1226]    1.0657172           NA           NA           NA           NA
#> [1231]           NA           NA           NA           NA           NA
#> [1236]    0.4307829           NA           NA           NA           NA
#> [1241]           NA           NA           NA           NA           NA
#> [1246]           NA           NA           NA           NA           NA
#> [1251]    1.3963100           NA           NA           NA           NA
#> [1256]           NA           NA           NA           NA           NA
#> [1261]           NA           NA           NA           NA           NA
#> [1266]           NA           NA           NA           NA           NA
#> [1271]           NA           NA           NA           NA    2.4678311
#> [1276]           NA           NA           NA           NA           NA
#> [1281]           NA           NA           NA           NA    0.9768236
#> [1286]           NA           NA    1.0707787           NA           NA
#> [1291]           NA           NA           NA           NA           NA
#> [1296]    0.8175089    1.4743868           NA           NA           NA
#> [1301]           NA           NA           NA           NA           NA
#> [1306]           NA           NA           NA           NA           NA
#> [1311]           NA    5.0737371    0.5766439           NA           NA
#> [1316]           NA           NA           NA           NA           NA
#> [1321]           NA           NA           NA           NA           NA
#> [1326]           NA           NA           NA           NA           NA
#> [1331]           NA           NA           NA           NA           NA
#> [1336]           NA           NA           NA           NA           NA
#> [1341]           NA           NA           NA           NA           NA
#> [1346]           NA    1.4214748           NA           NA           NA
#> [1351]           NA    0.2014372    2.2585330           NA           NA
#> [1356]    0.7659990           NA           NA           NA           NA
#> [1361]    0.6345024           NA    1.1232179    1.2145635           NA
#> [1366]           NA           NA           NA           NA           NA
#> [1371]           NA           NA           NA           NA           NA
#> [1376]           NA           NA           NA           NA           NA
#> [1381]           NA   10.4214382           NA           NA           NA
#> [1386]           NA           NA    1.5072360           NA           NA
#> [1391]           NA    1.6478479           NA           NA           NA
#> [1396]           NA           NA    2.0655625           NA           NA
#> [1401]           NA           NA           NA           NA           NA
#> [1406]           NA           NA           NA           NA           NA
#> [1411]           NA           NA           NA    0.5699065           NA
#> [1416]           NA           NA           NA           NA           NA
#> [1421]           NA           NA           NA           NA    1.0214655
#> [1426]           NA    0.6936538           NA           NA           NA
#> [1431]           NA           NA           NA           NA           NA
#> [1436]           NA           NA           NA           NA           NA
#> [1441]           NA           NA           NA           NA           NA
#> [1446]           NA           NA           NA           NA           NA
#> [1451]           NA           NA           NA           NA           NA
#> [1456]           NA           NA           NA           NA    2.5300288
#> [1461]           NA           NA           NA           NA           NA
#> [1466]           NA           NA           NA           NA           NA
#> [1471]    0.5699503           NA           NA           NA    0.4178057
#> [1476]           NA           NA           NA           NA           NA
#> [1481]           NA           NA           NA           NA           NA
#> [1486]           NA    2.3085105    7.4867916           NA           NA
#> [1491]           NA           NA           NA           NA           NA
#> [1496]           NA    2.4417286           NA           NA           NA
#> [1501]           NA    3.0711961    2.6359253    1.0029373           NA
#> [1506]           NA           NA           NA    0.3156207    3.3271339
#> [1511]           NA           NA           NA    0.7859326    0.9116367
#> [1516]           NA           NA    2.2751508           NA    3.6905310
#> [1521]    1.7462349           NA           NA           NA           NA
#> [1526]           NA           NA           NA    0.6127930           NA
#> [1531]    0.6677385           NA           NA           NA    0.3307993
#> [1536]           NA           NA           NA           NA           NA
#> [1541]           NA           NA           NA           NA           NA
#> [1546]           NA    2.4790754           NA           NA           NA
#> [1551]           NA           NA           NA           NA           NA
#> [1556]           NA           NA           NA           NA           NA
#> [1561]           NA           NA           NA           NA           NA
#> [1566]           NA           NA           NA           NA    0.9691072
#> [1571]           NA           NA           NA           NA           NA
#> [1576]           NA           NA           NA           NA           NA
#> [1581]           NA           NA           NA           NA           NA
#> [1586]           NA           NA    3.0772917           NA           NA
#> [1591]           NA    0.3885723           NA    0.3215049    1.6329483
#> [1596]    4.4057989           NA           NA           NA    0.4121964
#> [1601]           NA           NA           NA    0.8756598           NA
#> [1606]    1.1511103           NA           NA           NA           NA
#> [1611]           NA           NA           NA           NA           NA
#> [1616]           NA           NA           NA    1.2199212    2.9056976
#> [1621]           NA           NA           NA           NA           NA
#> [1626]           NA           NA           NA           NA    0.9633790
#> [1631]           NA    1.1713226    2.6179757           NA           NA
#> [1636]           NA           NA    7.3096509           NA    4.6009355
#> [1641]           NA           NA           NA           NA    0.6218465
#> [1646]           NA    4.1894031           NA   10.0505095           NA
#> [1651]   12.7552290   10.4093504           NA           NA           NA
#> [1656]           NA           NA           NA           NA           NA
#> [1661]           NA           NA           NA    2.2360206           NA
#> [1666]           NA           NA           NA           NA           NA
#> [1671]           NA    1.2496341           NA           NA           NA
#> [1676]           NA           NA           NA           NA           NA
#> [1681]           NA           NA           NA           NA           NA
#> [1686]           NA    0.4214600           NA           NA           NA
#> [1691]           NA           NA           NA           NA           NA
#> [1696]           NA           NA           NA           NA           NA
#> [1701]           NA    1.4234974           NA    5.9685678           NA
#> [1706]    1.4870299    6.5259218           NA   10.9112473           NA
#> [1711]           NA           NA           NA           NA           NA
#> [1716]           NA           NA           NA           NA           NA
#> [1721]    3.0024679           NA           NA           NA           NA
#> [1726]           NA           NA           NA           NA           NA
#> [1731]           NA           NA           NA           NA           NA
#> [1736]           NA           NA    5.5636888           NA           NA
#> [1741]           NA           NA    1.0834279           NA           NA
#> [1746]           NA           NA           NA           NA           NA
#> [1751]           NA           NA    6.3247514           NA           NA
#> [1756]           NA    8.4820938           NA    1.0724249           NA
#> [1761]    1.7462807           NA    0.2578186    2.8363187           NA
#> [1766]    2.7652164           NA    9.1981554           NA    2.7739875
#> [1771]   27.5907974           NA    3.4431446           NA           NA
#> [1776]    7.6219230           NA    7.2448454    0.9365459           NA
#> [1781]           NA           NA           NA           NA           NA
#> [1786]    1.4254460           NA           NA    1.9484344           NA
#> [1791]   25.4685478    3.3151047           NA    5.4201798           NA
#> [1796]           NA    1.0591918           NA           NA           NA
#> [1801]           NA           NA           NA           NA    2.2389860
#> [1806]           NA           NA    7.2797980           NA  177.9112701
#> [1811]           NA  712.0562744           NA    1.9180223    1.0850360
#> [1816]           NA   15.4796858    2.2603140    1.6407841    3.5157232
#> [1821]    1.3970622    2.8673556    4.1254120           NA    2.8693426
#> [1826]    4.2749281    0.8203884    2.7943869           NA    3.3467057
#> [1831]    3.0753074    2.7253366           NA    2.1626289    5.0227842
#> [1836]    2.3628030           NA    1.2205384    0.8150464           NA
#> [1841]    3.2100937 4247.9296875           NA           NA           NA
#> [1846] 4877.1162109           NA    1.7616867    1.8174063    0.7508621
#> [1851]           NA    3.5258093    2.7256949           NA    2.5574954
#> [1856]           NA    1.5129316           NA    0.6094913    2.6934810
#> [1861]           NA    0.9192376           NA    1.3823618           NA
#> [1866]  111.0667496    0.6147639    1.4611453           NA    0.7056657
#> [1871]    0.4673733    0.5605560    1.7962961    0.7591861    0.6475862
#> [1876]           NA           NA           NA    1.0416414   13.4244280
#> [1881]    0.8334653    1.4189600    0.8297019    2.9611456    1.5615076
#> [1886]           NA           NA           NA    1.4051919           NA
#> [1891]           NA    0.9027803           NA    3.6805460           NA
#> [1896]           NA           NA           NA  145.7117004           NA
#> [1901]           NA           NA           NA           NA           NA
#> [1906]           NA           NA           NA           NA           NA
#> [1911]           NA           NA           NA           NA           NA
#> [1916]           NA           NA           NA           NA           NA
#> [1921]           NA    0.3470792           NA    1.5938562    1.4932191
#> [1926]           NA           NA           NA           NA           NA
#> [1931]           NA           NA           NA           NA    4.3753552
#> [1936]           NA    0.6481672    2.1519599           NA           NA
#> [1941]           NA           NA           NA    1.0128362           NA
#> [1946]    0.6915093           NA    1.9947214           NA           NA
#> [1951]           NA           NA           NA           NA           NA
#> [1956]           NA           NA           NA    0.2430045           NA
#> [1961]    2.9182062    0.6795040    1.6664841    2.3586757           NA
#> [1966]           NA    0.8883650           NA           NA    3.2617228
#> [1971]           NA    2.8392348           NA           NA           NA
#> [1976]    1.6086547           NA           NA           NA           NA
#> [1981]           NA    0.6026787           NA           NA           NA
#> [1986]           NA           NA           NA           NA           NA
#> [1991]    1.2004064           NA           NA           NA           NA
#> [1996]           NA    1.3173006    3.6571672           NA           NA
#> [2001]    2.2624974           NA    0.9398944    3.5710230           NA
#> [2006]    1.0233446           NA           NA           NA    1.3720112
#> [2011]    1.0055754    0.5655854    1.5054272           NA    1.0397023
#> [2016]    3.3238027           NA           NA           NA    2.1077371
#> [2021]           NA    2.7032313           NA    3.8104489           NA
#> [2026]    2.8180630    7.8234811           NA    4.9062996           NA
#> [2031]           NA           NA    1.3160198           NA           NA
#> [2036]    1.0076615           NA    1.0950712           NA           NA
#> [2041]    3.9908450           NA    4.2435541           NA    0.7174511
#> [2046]    5.2825084           NA           NA           NA           NA
#> [2051]           NA           NA           NA           NA           NA
#> [2056]           NA           NA           NA           NA           NA
#> [2061]           NA           NA           NA           NA           NA
#> [2066]    0.8802158           NA    0.3888731           NA           NA
#> [2071]           NA           NA           NA           NA           NA
#> [2076]    0.7251250           NA           NA           NA           NA
#> [2081]           NA           NA    1.0856016           NA           NA
#> [2086]           NA           NA           NA    0.5659533           NA
#> [2091]           NA           NA           NA           NA           NA
#> [2096]           NA           NA           NA           NA           NA
#> [2101]           NA           NA           NA    0.4917859           NA
#> [2106]           NA           NA           NA           NA    0.4981284
#> [2111]    0.9569623           NA    0.7542380           NA           NA
#> [2116]           NA           NA           NA    1.5303959           NA
#> [2121]           NA           NA           NA           NA           NA
#> [2126]    2.5028656           NA           NA           NA           NA
#> [2131]    1.2001288           NA           NA           NA           NA
#> [2136]           NA           NA           NA           NA           NA
#> [2141]           NA           NA           NA           NA           NA
#> [2146]           NA           NA           NA    1.7258205           NA
#> [2151]    0.5163053           NA           NA           NA           NA
#> [2156]           NA           NA           NA    1.1474305           NA
#> [2161]           NA           NA    2.1486368           NA    2.4524887
#> [2166]    3.0907106    3.9163256           NA    6.1858454    6.0148554
#> [2171]           NA    3.3022101    6.8535738           NA    0.9091500
#> [2176]    5.3752904           NA           NA           NA    2.6620142
#> [2181]   14.2303267           NA    0.3268394    3.2703023    3.7256567
#> [2186]    3.4891803           NA           NA           NA    6.1556778
#> [2191]           NA           NA           NA           NA           NA
#> [2196]           NA           NA           NA           NA           NA
#> [2201]           NA           NA    1.2317547           NA           NA
#> [2206]           NA    3.0012579           NA    6.3596826           NA
#> [2211]    0.6037928    0.5698133           NA    3.7267346           NA
#> [2216]   10.2576380    0.8706866    4.9864445    4.3741260           NA
#> [2221]           NA           NA           NA    1.0901091   10.9061537
#> [2226]    4.1417003    0.5189514    8.2503548    2.2269182           NA
#> [2231]           NA           NA           NA           NA           NA
#> [2236]           NA           NA           NA           NA           NA
#> [2241]           NA           NA           NA           NA           NA
#> [2246]    0.3962348    0.3956501           NA           NA           NA
#> [2251]           NA           NA           NA    2.1887872           NA
#> [2256]           NA           NA           NA           NA           NA
#> [2261]           NA           NA           NA           NA           NA
#> [2266]           NA           NA    1.7824746           NA    3.7205944
#> [2271]           NA    3.6917150           NA           NA           NA
#> [2276]    0.7435969           NA    9.6342754   24.0429783    1.5591800
#> [2281]           NA           NA           NA           NA    1.9394968
#> [2286]           NA    3.0097637           NA    5.7848148    9.7665796
#> [2291]           NA           NA    2.0749505           NA           NA
#> [2296]           NA    0.4870613           NA    2.6161067    0.6431220
#> [2301]           NA           NA           NA           NA           NA
#> [2306]    1.2651863           NA           NA           NA           NA
#> [2311]    3.6852174           NA    1.1431226   21.9405651           NA
#> [2316]           NA           NA    1.2046832    1.8209703           NA
#> [2321]    0.5066832    0.9095992    9.7609291           NA    3.3460293
#> [2326]           NA    0.4121834           NA           NA    0.9202868
#> [2331]           NA    0.6617500           NA           NA           NA
#> [2336]           NA           NA           NA           NA           NA
#> [2341]           NA           NA           NA           NA           NA
#> [2346]           NA           NA           NA           NA           NA
#> [2351]           NA           NA           NA    2.0171058    1.1644038
#> [2356]           NA           NA    2.6082158           NA           NA
#> [2361]    3.6380553           NA           NA    0.8339515           NA
#> [2366]    1.4020016    7.2250385           NA    0.7268345    0.7294782
#> [2371]           NA           NA    0.9507068           NA    2.5481384
#> [2376]           NA           NA           NA    3.6101770           NA
#> [2381]    0.6119207    5.6888528           NA   16.1643982           NA
#> [2386]    2.6750910           NA    4.8989611           NA    0.4897856
#> [2391]   15.6936617           NA    3.9424517           NA           NA
#> [2396]           NA           NA    1.3334647           NA    0.4453856
#> [2401]    3.3320382           NA           NA    7.2846007           NA
#> [2406]    3.1082804           NA    3.1209931           NA           NA
#> [2411]    9.3145094           NA           NA    0.8143211           NA
#> [2416]    1.1926577           NA    0.6434940           NA           NA
#> [2421]           NA           NA           NA           NA           NA
#> [2426]           NA           NA           NA           NA           NA
#> [2431]           NA           NA           NA           NA           NA
#> [2436]           NA           NA    0.6482291    2.3913691    2.1481240
#> [2441]    2.7833135           NA    4.5657282    5.3265414           NA
#> [2446]   10.3909426   15.4557104           NA    0.6454072   43.3171730
#> [2451]           NA    1.4262301           NA    2.5555761    1.7280343
#> [2456]           NA    2.7765193    1.3546977    1.9755590    1.4631903
#> [2461]    1.5031183    1.5941623    1.5892071           NA    5.8746567
#> [2466]    2.2622027    2.5123510    5.3907886    5.1953430    3.1958568
#> [2471]    3.0968442    4.0582609           NA    3.2192631    2.5363874
#> [2476]    4.4969444    5.3325839    2.3695500    3.0062342    5.6627531
#> [2481]    6.4923205           NA    4.7920384    4.5700383    4.0006895
#> [2486]    9.5566549    5.8871794    7.4422898    5.2004848    9.2628069
#> [2491]           NA  784.9196167    4.6816382    4.1257901    6.6807156
#> [2496]    4.1821823    6.8080244    7.7087774   12.4988031           NA
#> [2501]    1.4474308  985.7752686    5.5145364    2.7746949    2.3561726
#> [2506]    3.7145381    6.2821894   10.4331989           NA    1.7673082
#> [2511]           NA           NA    3.1912456           NA    7.3891306
#> [2516]    1.3537637           NA    0.2704858    4.0082321    8.5943022
#> [2521]           NA    1.3064193    3.6371551           NA           NA
#> [2526]    2.5390623           NA           NA           NA           NA
#> [2531]           NA           NA           NA           NA    0.7411902
#> [2536]    0.5046070           NA           NA           NA           NA
#> [2541]    0.5680771           NA    1.2300223    2.8467999    2.6166818
#> [2546]           NA           NA    0.5497193           NA   16.0667572
#> [2551]    1.9547974           NA    0.9511589   15.4262342           NA
#> [2556]    2.4667881           NA    1.0057802           NA    2.2017863
#> [2561]    3.7578349    5.2645087           NA    0.7512842    2.5041356
#> [2566]    1.8741575   11.7041502           NA   22.0120201           NA
#> [2571]    3.6391535    2.4130566           NA           NA    1.3888769
#> [2576]    1.4703723           NA           NA    1.5291082           NA
#> [2581]    2.3573880           NA           NA           NA           NA
#> [2586]    0.6399383    1.6180218           NA    2.6052721           NA
#> [2591] 1237.6204834   19.8997154           NA   39.6545715 4069.6533203
#> [2596]    3.8779757    2.9248793   14.3836384           NA   38.9334831
#> [2601] 4267.4248047    6.9302726    5.0617962    4.1785703   28.3963814
#> [2606]           NA    6.4566789    3.4296451           NA    3.7816880
#> [2611]           NA           NA           NA           NA           NA
#> [2616]           NA   11.0247078   27.2765732           NA           NA
#> [2621]           NA           NA           NA           NA           NA
#> [2626]           NA    2.2371943           NA    0.9170940    0.7460240
#> [2631]           NA    0.8210835    1.6487689    9.5727634           NA
#> [2636]    1.6570802           NA    0.8196399    0.8946962   13.3170853
#> [2641]           NA   28.8410645           NA    1.4570224    0.2454604
#> [2646]    0.6586674           NA    1.0929065    1.2879230           NA
#> [2651]    2.9674864    0.5844296           NA   11.5823431           NA
#> [2656]    2.6197197    0.6617230    1.0072753           NA    1.0431374
#> [2661]    1.7980380    1.8940541    4.3480368    2.6686113           NA
#> [2666]           NA    2.4794784    4.1561966           NA    1.2986863
#> [2671]    1.2777241    3.0134482           NA  101.8303833    3.4352007
#> [2676]    3.0277224   13.1016092           NA    0.5244251    1.7064619
#> [2681]    0.3486639   50.7429390    1.7649055           NA    2.7503626
#> [2686]           NA    0.3800137    3.3221421    3.1534879           NA
#> [2691]   15.4715948    1.4704005    1.8855512    4.0389700    1.0823137
#> [2696]    2.6767426    2.1071370    3.6332088           NA    0.6826217
#> [2701]    1.0185049    3.3197520    3.8973808    6.3822713    5.1280479
#> [2706]    8.5763950    3.2864881           NA    1.3272406    3.2673051
#> [2711]    5.7568297    8.3966360   16.3681469    7.2476711    5.4942021
#> [2716]    2.1211190           NA    1.5519290    3.6947889    3.6529276
#> [2721]    7.1617284   23.2306347   20.4122696   17.6928806    5.1081491
#> [2726]           NA  117.3710403    2.7161827   48.0717468   18.4067097
#> [2731]    3.7467299    3.6180439   15.2693739           NA    4.7089896
#> [2736]    2.5892634    9.7226076  139.4568787    7.4229794   11.8008423
#> [2741]   44.5208054   10.5249119           NA    5.9375591   20.7310448
#> [2746]  216.7257538   12.0509796   32.5807915  140.1287079   18.1983509
#> [2751]    7.9473476           NA    4.0145078           NA    5.9600363
#> [2756]    4.9861374   40.1272926   16.1208572   13.0407543    6.8589644
#> [2761]           NA    4.9722199   11.0004854    7.2423544    6.4803615
#> [2766]   14.1402922   23.9029579   15.6984034   17.9236164           NA
#> [2771]    3.2453372    9.5185261    8.6210403    3.0081079    3.5888493
#> [2776]    6.0433631    7.4204693   11.3490496           NA    3.6138747
#> [2781]    1.7851294    4.3751335   38.7952423   25.8243275   20.6631317
#> [2786]           NA    2.3311818  701.8855591  333.9076538    5.9194384
#> [2791]    5.2374392   50.5938759    6.6050563   29.6740894           NA
#> [2796]    6.8099937  729.9282227    4.7258272  377.9533081    3.7225027
#> [2801]    5.8937206    8.3230190    8.7469826           NA    1.2891947
#> [2806]    2.5859647   75.5915375    4.7863827   45.3149376    2.4862499
#> [2811]    6.5945859    6.9634075           NA   35.3314667    3.0827610
#> [2816]   86.5234299 1061.5833740    3.1925797   39.1028519    5.1561656
#> [2821]  727.2340088           NA    4.6954513    4.7806416    2.0299914
#> [2826]   67.0260162           NA           NA    8.1010742    1.6631573
#> [2831]    1.8530455   79.0636978   30.3669281           NA    0.8927791
#> [2836]   10.3849897    1.0268044           NA    3.1952302    0.7755960
#> [2841]    5.7425203    7.2843447           NA    1.2209314    1.8280462
#> [2846]    7.8098340           NA           NA           NA    3.8438480
#> [2851]    1.6488374           NA    1.9727218   21.7567501    0.7352579
#> [2856]           NA    1.9201657   52.0057869           NA  127.3143768
#> [2861]    5.6821346           NA    2.5211284    2.3330369    2.1601825
#> [2866]    9.7243500    9.3593960           NA    2.9505100    5.4880805
#> [2871]    8.6688786    2.6024387           NA   11.9668989    2.1561337
#> [2876]   12.3195581    1.2745084    1.9595144    5.3821392   19.5642281
#> [2881]   16.0015182           NA    3.0178616    4.6744413   21.4054432
#> [2886]    2.3722150   17.8877811    7.6304569   36.1747169    4.2541361
#> [2891]           NA   33.9568787    6.3856707    2.6096203   13.1905775
#> [2896]    2.4566786   47.8784180    6.1847539           NA   46.1483879
#> [2901]    3.2702918    3.5770297   12.7957163    5.9115996    4.5292888
#> [2906]    5.1561074           NA    4.0170932    3.9871593    5.1863651
#> [2911]    1.8988326    7.9102783           NA    5.5774412 2934.2749023
#> [2916]    1.7749847    8.5469313   16.3584347   10.1700211           NA
#> [2921]    0.2661873    6.4565039    8.4741077           NA           NA
#> [2926]           NA    0.1989040    0.4645469    1.7402502   29.9008598
#> [2931]    0.5417653           NA    0.7619571    2.3052864   23.7764740
#> [2936]    3.5269954           NA    6.3716865           NA    4.5834875
#> [2941]    0.6944337    9.3756256           NA    0.4391756    0.4102839
#> [2946]           NA    0.4088447    4.4651365           NA           NA
#> [2951]    2.3560781    0.8629871    1.7296497           NA    2.3054824
#> [2956]    0.4738956    0.8453057    0.6674856    2.9770677    0.9882508
#> [2961]    2.5485382    1.3252913           NA    0.9046306    3.3730309
#> [2966]           NA    1.3325157    0.8287238    3.2393219    2.8408599
#> [2971]    1.1969875           NA    4.9852405   16.4274426    0.7676155
#> [2976]    5.0130310           NA    2.2948136           NA    2.0398157
#> [2981]    1.0926311           NA    1.6752559    2.0661981    0.7237425
#> [2986]    4.8128242   11.1487827           NA    0.8632420    1.8443307
#> [2991]           NA    0.4144078    1.5147480    2.7527251           NA
#> [2996]   13.0752268           NA    1.8903236    7.9921408    1.5463461
#> [3001]           NA    0.8109860    1.0667026    1.1346698           NA
#> [3006]    3.6560605           NA    3.3797889           NA    3.5629609
#> [3011]    3.4544880    4.5592079           NA   16.6013031           NA
#> [3016]    4.6765566    1.6968081    1.1385404           NA    1.4192655
#> [3021]    2.8486712    2.6313102           NA    0.6307487    2.3814776
#> [3026]    2.7711914    0.7061450           NA    4.9312925    1.1609619
#> [3031]    6.7711430           NA    2.8384895           NA    3.6513107
#> [3036]           NA    3.9373784    5.0244951    9.3638000           NA
#> [3041]   17.6887131           NA           NA           NA    8.8094635
#> [3046]           NA           NA    4.6279211           NA    1.6137590
#> [3051]           NA           NA           NA    0.6182525    0.8786079
#> [3056]   15.0547085   24.5552330    7.9792995           NA   64.7950058
#> [3061]   97.0138016    9.9027309    0.5985516           NA    1.5779028
#> [3066]   11.9724445           NA    1.9544525           NA  163.6211090
#> [3071]           NA    2.1614091    8.1083727           NA    2.6397953
#> [3076]    3.5538256    7.1930056           NA    0.6664237  442.5400391
#> [3081]    3.0430346    6.4073930    5.0266309    5.8590345   19.6998043
#> [3086]           NA    4.3898072    1.1305788   13.5925970    7.2308283
#> [3091]           NA    1.1136869    1.3520640    1.6164834    1.0973755
#> [3096]    2.0894964    9.5560360           NA           NA    8.9295197
#> [3101]  779.4788818    2.5705523  809.9169312    3.0098879   94.3604507
#> [3106]    8.8758574           NA    3.4457500    4.9686089    1.5195554
#> [3111]    2.1578839    4.8023272    2.1327522           NA    0.3200580
#> [3116]   12.4226055   12.1050863 1096.2231445 1066.9301758  129.4904938
#> [3121]    4.5963664    3.0736189           NA    8.0031509    3.2705626
#> [3126]           NA    0.3757358   15.2121391    2.8834486   15.9752741
#> [3131] 1346.7353516    2.6217887 1228.9621582    5.0895567           NA
#> [3136]    2.1218104  184.3674316    4.2164469    2.8267379    6.7104831
#> [3141]    3.8288674    3.0664554    4.4310689           NA 2268.6291504
#> [3146] 1836.1269531    2.0746028    2.2918937   10.7542877   51.3735046
#> [3151]    6.6448908    6.1085730           NA    1.4560728    2.8452797
#> [3156]    3.7901433    2.0456872    1.9614782    5.3406096    6.5233908
#> [3161]    5.8153443           NA    4.9779243    5.2980742    1.9569403
#> [3166]           NA    3.0366473           NA    0.8441148    0.7282568
#> [3171]    0.6270677    1.9153599    2.5157802    2.5211849           NA
#> [3176]    1.3664742   16.0325813           NA    1.9972137    1.1040767
#> [3181]           NA    0.9441139           NA           NA    0.9234766
#> [3186]           NA    2.2210290    0.8783525    2.1501570           NA
#> [3191]    8.6357822           NA    1.6162349           NA           NA
#> [3196]    1.9563223    1.2261102    5.9679408           NA    2.4582469
#> [3201]    3.3074541           NA    0.6635520           NA    3.4940929
#> [3206]           NA           NA    2.6760423           NA    1.0429727
#> [3211]    0.5086066    1.0268028    3.8812792           NA    3.5886321
#> [3216]           NA    3.9809752    7.7894588           NA           NA
#> [3221]    0.8405986           NA    1.1336366           NA           NA
#> [3226]    2.8971629           NA           NA           NA           NA
#> [3231]           NA           NA           NA    0.7070799           NA
#> [3236]           NA           NA           NA           NA    0.7151046
#> [3241]           NA    0.5353748    1.3802744           NA    4.1309824
#> [3246]    4.8025975           NA    8.7120161    2.2102430   10.5090933
#> [3251]   10.4218655           NA   22.3232746           NA   36.9990120
#> [3256]           NA    2.9090240    2.3153019   76.6485138    2.9318345
#> [3261]           NA    1.6010859    5.8318458    2.6627228    6.4075303
#> [3266]    2.0914986   11.3002634           NA    1.0663972    9.0038490
#> [3271]    7.7891731    1.4418688    4.8872490   13.7815018    7.2834721
#> [3276]           NA    0.6722869   12.7788944   14.1886673    6.0767541
#> [3281]   17.2682152           NA    5.8392038    3.2879653   25.1995487
#> [3286]   27.0342846   11.1438723   38.4615974   10.6467648   20.4387722
#> [3291]           NA    3.0112209    1.9950336   10.1919136    1.5909361
#> [3296]    4.7708578 1141.7640381    9.8121815   22.5490570           NA
#> [3301]    3.3931487    9.8001604    4.6790090 1271.7685547    2.8506472
#> [3306] 1103.0401611   17.5955009    5.1776738           NA    2.9927020
#> [3311]    2.1627703    3.1698050           NA   13.8667717 1411.4106445
#> [3316] 1272.9426270   21.3413105           NA    0.8185354    2.8377655
#> [3321]    2.0303440   21.7762794           NA 1345.3233643 1350.6333008
#> [3326]    6.6278219   29.8857651           NA   52.9047775 1294.8477783
#> [3331]   12.9526482    9.6068335   17.7135353           NA           NA
#> [3336]           NA    2.6911139    3.7828991           NA    0.7059131
#> [3341]    5.9516506    4.0300317    2.7630870    5.6403260           NA
#> [3346]    7.4636693    2.0741365    5.1799192    6.4390368    9.8243055
#> [3351]           NA    1.5092793    4.3210769           NA    1.7446249
#> [3356]    3.4029963 2283.2792969    3.9234891    6.9994988    4.1006012
#> [3361]           NA    0.6282611    1.8591487    4.4599166    2.1398880
#> [3366] 2337.1853027    4.3932910    9.6464186   12.7156582           NA
#> [3371]    0.9086848    9.3874264    3.2540348 2646.2402344    6.6778555
#> [3376]    3.9801006   21.6677666           NA    1.3727722    2.5189867
#> [3381]    7.1042595   10.0052004    1.5813689   23.2121410    2.8682461
#> [3386]           NA    1.3422523    0.7672858    0.6866859    3.6084216
#> [3391]   18.3351460           NA    0.8394666    1.9887234    1.5026515
#> [3396]    1.3683980    5.7951837    9.8654814    2.1221330           NA
#> [3401]    2.1047983    3.0744431    1.9053514    2.6970651    2.0816550
#> [3406]    1.9742609    9.6418734    7.6057978           NA    3.4838214
#> [3411]    8.8084707    6.6040335    3.2611005    9.0701380    3.0636346
#> [3416]    1.7033354   12.7065725           NA    1.9277512   11.4872437
#> [3421]   12.6639729    1.8488846    4.4552321    4.2770810    9.8547640
#> [3426]    3.8485291           NA    2.1161973    2.0724041    6.0630097
#> [3431]    2.5432432   29.9757633    3.4243822    1.5343714    7.8658175
#> [3436]           NA    1.2879468    6.8999977    6.3626080  268.5536194
#> [3441]    5.7748380           NA    5.2410469    2.0550699           NA
#> [3446]    0.4435597    5.4935684    0.9196581   75.9311295    3.3142908
#> [3451]   80.4429626    5.9293828    2.2810714           NA    2.8269784
#> [3456]   20.1030636           NA    1.1432312    3.6678035           NA
#> [3461]    1.0070125    3.5375540    2.9908266   22.7290974           NA
#> [3466]    2.3943624    0.9211383    1.9665295           NA    0.8259042
#> [3471]    0.4845653   25.3855438    3.8617392           NA    6.6030455
#> [3476]   18.8038082           NA    0.5806934    3.3330538  101.8569031
#> [3481]           NA   14.4165783           NA    1.7161655    7.3081284
#> [3486]           NA    2.1098645    0.8144141    1.3382024    1.4885535
#> [3491]           NA    0.8770674    0.6791099           NA    1.6695246
#> [3496]           NA    1.2673935           NA    0.6891360    1.2439822
#> [3501]    5.2793922           NA    1.2573010           NA    3.7120969
#> [3506]    4.9950824   11.5787373    1.9612808           NA   10.3544693
#> [3511]    6.0420938   18.6085644           NA    1.5667670    1.2138346
#> [3516]   30.0845642   19.6141224    3.2639980           NA    3.6546156
#> [3521]   29.6098766    2.8610103    6.0040512    1.8776323    3.8169975
#> [3526]           NA    4.7191100    1.0195367    3.8605018    8.1590776
#> [3531]    2.8668685   12.0980616    5.0243416    7.0915346           NA
#> [3536]    2.7560163    6.1319265    5.5243936   46.6120872   24.7890339
#> [3541]    6.4685655    9.1421661   10.3797007           NA   10.7507782
#> [3546]    7.7589669   12.2742815    4.6532531    5.1379547   23.7994213
#> [3551]   29.3476200    4.0036497           NA    7.5182543   11.9706621
#> [3556]   63.0551071    5.1469116    8.4730129   72.0657578   10.1063595
#> [3561]   65.6397705           NA    4.1467509   13.0881023   27.2654285
#> [3566]   96.3133926  108.4684830   15.9769907   16.9430561   14.3318129
#> [3571]           NA    4.6791883  126.8739243    6.6298981   18.2740936
#> [3576]   28.1178570    8.4018116   24.9042740   22.9308643           NA
#> [3581]    5.7845116 2804.5610352    6.1323233    7.0216298   34.0006905
#> [3586]   11.0745640   23.1465626   26.1845646           NA   15.7390766
#> [3591]    6.2733459   11.7022743    4.5109916    3.0380044   72.1676025
#> [3596]   18.0594807   16.0637493           NA    8.0370464  176.6657867
#> [3601] 2181.4362793    9.6984138 3978.9870605    8.6989155   11.3172474
#> [3606]   39.0961494           NA 2588.9499512 3505.7983398  144.8855133
#> [3611]    5.1680942   30.6885090    6.6054115    5.6432614    2.7389083
#> [3616]           NA   53.9481773   62.0971260 2972.6391602  161.4343109
#> [3621]   35.4546394   11.2379074   13.3652372   15.0986557           NA
#> [3626]   20.7111149    9.2977657  425.2767639  216.2778320    7.9142838
#> [3631]    5.0309882           NA    1.0399815    1.0769179    4.5379925
#> [3636]    3.6899538    2.2575519   17.9379234           NA   22.7302589
#> [3641]    6.5185528   19.6637669           NA    0.2854209    7.1664414
#> [3646]    9.3295479           NA    1.1119181    1.1998634   44.4294777
#> [3651]    6.0005445    1.2984159           NA    0.4181677    1.3962787
#> [3656]           NA    0.8486760    0.6826237    1.3289268   41.6967010
#> [3661]    1.6696991           NA    0.8142897    0.3997326   64.2423019
#> [3666]           NA    4.2105532    8.1320543    0.8433636   21.3994884
#> [3671]    0.6499675    1.6173933    2.2819724   79.2927475           NA
#> [3676]    2.7942066    0.6122881    5.6340408    2.3877366    2.5358839
#> [3681]           NA    1.6963638    2.8207321    1.6094570    3.0496490
#> [3686]           NA    5.2695556    0.7497861    1.1942160           NA
#> [3691]    2.8949137    1.8337013           NA    7.7278204    3.0212984
#> [3696]           NA    4.6463079    1.1313710           NA    3.0398493
#> [3701]           NA           NA           NA    1.1938435           NA
#> [3706]    0.5559963    3.7946312           NA           NA    0.7459199
#> [3711]    2.6556878    4.8397417           NA           NA           NA
#> [3716]    2.1508582    4.1808691           NA    1.3044889    3.6563311
#> [3721]           NA    5.6848607    4.3057156    4.3253880           NA
#> [3726]   44.0154037    6.8031969           NA    1.0149941   16.5446339
#> [3731]           NA   50.2134972    1.4178553    5.2461462           NA
#> [3736]    6.6964250           NA    1.3668361    7.0547361   15.4979038
#> [3741]           NA    2.5466137   12.0476017   16.9358387    4.2765665
#> [3746]           NA    3.0282452    2.0438735    3.0750351   30.2993698
#> [3751]    4.1311669   10.5620518           NA    6.3157725    2.0541127
#> [3756]    6.4616790   52.7001801    6.5350013    2.7538323    5.5697684
#> [3761]    7.0785255           NA    0.7346154    4.6684666    2.3665750
#> [3766]    2.1643167   13.1310358   11.3682957           NA    1.0712550
#> [3771]   12.9957743 1371.8287354    1.3735292    4.6520715   20.4687824
#> [3776]   14.5587559           NA 1770.5562744    2.6400170   15.1324883
#> [3781]    1.9400562    4.7408748    2.0517797   32.1368103           NA
#> [3786]    0.9072015 1766.3382568   11.0576754    2.3649356    7.1545792
#> [3791]    5.3592334   29.8745804           NA   99.2443008    1.9519557
#> [3796]    3.5576828    5.4862013   19.1255341           NA    1.0205218
#> [3801]   74.6288681    2.6257737    3.8454990    0.9508846   15.9569130
#> [3806]           NA    3.9706428           NA    6.0614076           NA
#> [3811]    0.9358777    0.4645265    1.3660873    2.9063818    6.6953201
#> [3816]           NA    1.7190092    0.9622721    1.7018661   11.3596716
#> [3821]           NA           NA    3.0443096           NA    0.6346511
#> [3826]           NA           NA           NA   10.0340395    0.8095649
#> [3831]    0.9709995           NA    3.2444031           NA           NA
#> [3836]    0.5028589    2.7934396    6.8828177           NA    0.5587204
#> [3841]    1.6042945    1.3587892           NA    0.8313419    2.4558291
#> [3846]    1.7974735           NA    3.6726115    5.6037540    6.7877126
#> [3851]           NA    3.6458204    0.8579472    8.0946331   12.1906815
#> [3856]    1.5101539    6.0351577   11.0641689           NA   17.6339569
#> [3861]    3.6026669   16.1998940    2.8316128           NA    4.9478583
#> [3866]   27.5424156    7.0986490    3.9904847           NA    4.6039705
#> [3871]    3.3738575   12.1051941   11.3188763   14.8368187    9.5498314
#> [3876]           NA    1.9773377   13.8263979   23.9170589   13.4375019
#> [3881]    9.8440132           NA   11.2628098    2.5026691   22.5849972
#> [3886]   29.0189171   18.8118534           NA   22.0679207    4.0647068
#> [3891]    2.0535538    1.5048116    3.3824587    2.3311884   32.8195572
#> [3896]           NA   37.0816650    7.0685787    5.5009451    5.8517952
#> [3901]    4.9319654    3.4151902    4.2116370    8.8043442           NA
#> [3906] 1099.1087646    5.3256183    5.2614517  480.0812378    5.3612590
#> [3911]   12.7172546    6.3167968   14.1994934           NA   59.6927795
#> [3916]  964.6279297 1400.3564453  535.6882324   23.6954079   14.5343561
#> [3921]    2.9595783   17.3649712           NA    1.0824900 1221.8245850
#> [3926]  147.4770660  683.7954712    6.1305389    4.9751444   15.9264107
#> [3931]   18.4570618           NA 1083.5487061  191.7899017  875.8353271
#> [3936]  577.2622681   71.0305328    8.1075430    5.3227873   11.6976309
#> [3941]           NA    0.4594952    1.4792782    1.6332765    4.2618947
#> [3946]    6.4441838    2.9269114  130.0458374    5.1534815           NA
#> [3951]    3.5288918    2.2328265    7.3872643   35.0871201  164.8385925
#> [3956]   41.0983658           NA    3.6965251    3.6046982   34.9871025
#> [3961]   54.6165199           NA    3.3092432    6.2893038   54.9078522
#> [3966]           NA    4.6468277    5.5542288   52.0769882           NA
#> [3971]    7.5430121   11.7523575   32.7870789           NA    4.3187008
#> [3976]   22.1579170    5.4699397    1.8834021           NA    9.8157177
#> [3981]    3.3649621   10.4119244   12.9897251           NA    3.0194745
#> [3986]   20.3988075    9.6839437    1.9245056   27.7328892    4.6774187
#> [3991]    2.8958423           NA    5.1254649   25.3332367   15.3362989
#> [3996]    5.6253791    9.0580263    3.3217881   16.1069527    5.7460155
#> [4001]           NA    9.0998583    6.4395881   27.5900745   11.9862118
#> [4006]   10.4788322    4.7713022    7.4465909   21.6194534           NA
#> [4011]    3.4900868   11.9859657    7.1533313   53.6382294   22.4019108
#> [4016]    3.4466097   11.8166838   31.7925739           NA    7.1903763
#> [4021]   22.3436050   21.0166111   11.6625166    9.6446323   11.8060122
#> [4026]   10.7140808   20.5072823           NA    5.8385706   12.4566240
#> [4031]   27.2418690 1374.2124023    5.0976796    8.5298624    8.9547720
#> [4036]   14.1582394           NA    3.6345949    8.9698286  746.4771729
#> [4041]   16.0491295   14.2799292   12.4969416   16.1063213   17.6739025
#> [4046]           NA   13.8779955    5.8102989    4.7912970    8.5829220
#> [4051]    7.5092740   16.8982792    8.7955656   27.1313457           NA
#> [4056]   10.5999660  102.9700699    5.2469325   78.4538498   23.4321194
#> [4061]   13.5085144   28.0264759   42.0644264           NA    3.0340507
#> [4066]   16.6190434 1717.7260742    6.9299235   10.5656214   27.8841705
#> [4071]   17.4288807   47.0360756           NA    5.2313685   49.5542450
#> [4076]    4.6091428    7.5845995    5.1649594    5.6527944    6.7112393
#> [4081]    7.1952438           NA    2.8361075  936.4321899   10.8392658
#> [4086]  300.9952393    3.7918711    5.8666444    9.0892420    7.9013219
#> [4091]           NA    5.9726405    6.4315825    6.7033081  174.0914154
#> [4096]    9.4583406   13.8090487   25.1833706   10.3936863           NA
#> [4101]   11.1641397    3.6089337    4.3211293    4.5236745    5.9249415
#> [4106]   19.1762638   44.9207954 1162.3734131           NA    9.1217899
#> [4111]    6.2500715   14.8576088    9.4355440   27.3175831   75.4738541
#> [4116] 1927.7430420   10.6061239           NA    2.5857298    5.2106519
#> [4121]   16.0033913   13.5474854   30.9249420 2882.4428711   37.9162636
#> [4126]   75.5530014           NA    6.0951519    4.3891191   10.3061371
#> [4131]    6.6429935   39.4176941   10.0774698   83.8411789   21.2222996
#> [4136]           NA           NA    0.6372588    3.5606251    2.5927734
#> [4141]    3.2620273    2.3674390    1.8626410    6.6079321           NA
#> [4146]    2.4800649    6.8728633    2.8025930   10.0381966    4.8456726
#> [4151]   89.1146164    4.3337107    3.8712926           NA   42.9793968
#> [4156]    2.5299530    7.4297533    4.6089058           NA    3.5378845
#> [4161]           NA    0.1817949    1.1290787    1.5784779    1.1125787
#> [4166]           NA           NA           NA           NA    2.0033450
#> [4171]           NA           NA           NA           NA    1.0376083
#> [4176]    1.9011122    2.3181555           NA           NA           NA
#> [4181]    1.6446155           NA           NA           NA    0.9089839
#> [4186]    0.4841611           NA    0.6897894    0.7658206    0.6156495
#> [4191]    1.4828655    2.3340645    1.1662629    0.9815852    2.3534944
#> [4196]           NA           NA           NA    2.1499813    0.7019742
#> [4201]    0.3516256    3.2850077    5.8242555           NA           NA
#> [4206]    1.3007295    1.5015216    0.8093400    3.2225409    2.6426129
#> [4211]           NA    2.3901305    2.9790335    2.9894137    5.2419791
#> [4216]    4.8620076           NA    0.3997991    3.0470288   11.9397249
#> [4221]    3.6320026    8.3058691    1.3834330           NA    4.1316576
#> [4226]    3.7130520    3.9005911   16.1633472    3.6801958   12.0339565
#> [4231]           NA    1.1500748    1.2219627    0.5826390    3.3800447
#> [4236]    5.2994637           NA    2.6451149           NA    2.7287869
#> [4241]    3.1930273           NA    1.8436399    2.9893756           NA
#> [4246]    4.9069676           NA    5.8526864           NA    1.9956532
#> [4251]    5.7515755           NA    9.3381653           NA    3.7572572
#> [4256]           NA           NA           NA           NA           NA
#> [4261]           NA           NA           NA           NA           NA
#> [4266]           NA    0.4758977           NA           NA           NA
#> [4271]           NA    0.5950958           NA    1.2651656    0.5604061
#> [4276]           NA           NA           NA           NA           NA
#> [4281]           NA           NA           NA           NA    1.5873302
#> [4286]           NA           NA    1.7309831           NA    2.2026825
#> [4291]           NA           NA           NA           NA           NA
#> [4296]           NA           NA           NA           NA           NA
#> [4301]           NA    0.8321332           NA           NA           NA
#> [4306]           NA           NA           NA    3.1331923           NA
#> [4311]           NA           NA    1.8596388           NA    4.0986276
#> [4316]           NA    1.4462790    5.0948448           NA    3.3446779
#> [4321]           NA   14.7490797    4.2720022    2.3573306   12.4373245
#> [4326]    5.4349809           NA    5.5168352    7.1895194           NA
#> [4331]    1.3353804   31.1978798    6.0550547    5.3862381           NA
#> [4336]    2.3742425    1.6283454           NA           NA           NA
#> [4341]    3.8663564           NA    2.5557170           NA           NA
#> [4346]    3.9340308           NA    4.8355684           NA           NA
#> [4351]           NA           NA    0.8258027           NA           NA
#> [4356]    1.6850734           NA           NA    8.2018566           NA
#> [4361]    2.8547313           NA    2.7901099           NA    1.2237481
#> [4366]           NA    1.2317826    5.9977107           NA    2.4985216
#> [4371]    5.4254308   10.2619724    3.6585343           NA    0.7505842
#> [4376]    1.0290449    1.4102111   31.6295795    6.0977502    3.3116033
#> [4381]           NA    6.6416101   13.4169693           NA    2.0772371
#> [4386]    2.5722609    1.4239205    1.1951129   19.3541183    6.6528106
#> [4391]    7.6534238           NA    3.3320429    3.9984677    2.1092513
#> [4396]    8.5107756    2.7920604   28.8576584    1.6512991    2.0430546
#> [4401]           NA    6.1738434    2.2872250    3.3046799    4.1366568
#> [4406]    2.0184140    3.4700344    2.1820960    9.8032455           NA
#> [4411]    9.3485680    7.2345314   20.3594875    7.5089312 1627.1451416
#> [4416]    5.3730831    8.5319214   12.6467562           NA    6.4055276
#> [4421]    5.4178729    3.8174756   60.1280174    6.4091296   14.2986145
#> [4426]   13.2007456   17.6533527           NA    4.6876645 2218.6071777
#> [4431]    5.9873571    5.4104090   13.5144920    4.3813696    8.5980825
#> [4436]   19.0352879           NA 1989.9606934    6.5922198    8.3580027
#> [4441]    5.7576084  341.0995483    3.3168538    9.5687895    9.9157639
#> [4446]           NA    8.6866083  366.3923645    6.9480758   10.2027311
#> [4451]    7.9508238   12.0425510    5.7334862    5.7009211           NA
#> [4456]    9.3929729    4.2744284   16.8116989    3.3318050   61.5876274
#> [4461]    3.6692767    4.6599665           NA   16.0338726   43.3646393
#> [4466]           NA    0.4666836    1.1231649    3.3837605    5.3292937
#> [4471]    3.6405241    9.7523746           NA    0.9140767    0.7435523
#> [4476]    0.2535407    5.4856982   15.5203247           NA           NA
#> [4481]    3.2470930    2.7420650           NA    0.6101449    1.0404911
#> [4486]    2.7917345    6.6811185    2.0745556           NA    1.2540616
#> [4491]    0.3098164    1.6586421    9.5700045           NA    0.7319268
#> [4496]   12.7017021           NA           NA    0.6637144           NA
#> [4501]    1.5885706    0.8827127           NA    2.1940100    3.7667232
#> [4506]           NA    2.0905075           NA    0.6379106    2.9787626
#> [4511]           NA           NA           NA    0.4874143           NA
#> [4516]           NA    0.3836070           NA           NA    0.5107485
#> [4521]           NA           NA           NA    1.1823709    1.2667042
#> [4526]           NA   19.2034588    1.6550628    1.1661954    0.8966293
#> [4531]           NA    3.2779715           NA   11.0150242           NA
#> [4536]    1.6130922   26.5314026    2.5117977    2.3132839    2.2919271
#> [4541]           NA    3.1338563    1.5114740           NA    2.0381725
#> [4546]    5.2738991    2.9814677    3.5173035           NA    2.9813018
#> [4551]    1.8998176           NA    7.4101906    5.3717108    4.2854128
#> [4556]           NA    0.2399864    6.4908400    1.6760609    4.9045634
#> [4561]    3.0678418           NA    2.1384492    9.3216219   10.4645767
#> [4566]           NA    0.3764410    1.2218126    1.2995534    9.7801199
#> [4571]    2.0047073   26.3789768           NA    1.0760976    0.9736537
#> [4576]    2.0357609 1576.8568115    1.4469386    3.0481942    1.6708410
#> [4581]           NA    0.9496741    2.6938272    1.8960530    2.1988547
#> [4586]    1.2718045    1.2236259           NA    1.4919758    4.3979073
#> [4591]   71.3828812    2.0391872    2.2703087    2.6103971    1.4898348
#> [4596]           NA    1.5168892    0.8818803    1.8848048    0.6037043
#> [4601]    1.8731611    7.1765389    1.9562593           NA   11.7375755
#> [4606]    1.6933267    1.5986614    5.0060325    5.2257977           NA
#> [4611]    4.1671195    4.4332304    6.8677626           NA    2.4653215
#> [4616]    6.3500257   10.9838686    6.4111762    9.4890432    4.7053976
#> [4621]    1.8102279    1.4213001           NA    1.6444297    1.9174886
#> [4626]    0.4131429    1.5709261    3.1760740    1.0655589  919.2457886
#> [4631]    1.5643872           NA    1.7901465    1.7823997    6.9229293
#> [4636]    2.2213833           NA    0.8164910           NA    6.7707281
#> [4641] 1034.1815186    2.8209743    0.6380021           NA    1.1908475
#> [4646]    2.2225995           NA           NA           NA    1.8188674
#> [4651]           NA           NA    2.1192210           NA    1.1434188
#> [4656]           NA    1.2050375           NA           NA           NA
#> [4661]           NA    1.7906495           NA           NA    3.5892394
#> [4666]           NA           NA           NA           NA           NA
#> [4671]           NA           NA           NA    0.7533023           NA
#> [4676]           NA           NA           NA           NA           NA
#> [4681]           NA    1.4840194    2.2305763           NA           NA
#> [4686]           NA           NA           NA           NA           NA
#> [4691]           NA           NA           NA           NA           NA
#> [4696]           NA           NA           NA           NA           NA
#> [4701]           NA           NA           NA           NA           NA
#> [4706]           NA           NA           NA           NA           NA
#> [4711]           NA           NA           NA           NA           NA
#> [4716]           NA           NA           NA           NA           NA
#> [4721]           NA    2.4143374           NA           NA           NA
#> [4726]           NA           NA           NA           NA           NA
#> [4731]           NA           NA           NA    1.9114826           NA
#> [4736]    1.0137789           NA           NA    4.2369156           NA
#> [4741]    2.1006327    2.7787836    0.9601986           NA    8.1295986
#> [4746]    7.2806950    1.1032010           NA    2.3385823           NA
#> [4751]    1.1522059    1.4659723    8.5681458    1.8708251           NA
#> [4756]           NA           NA    9.6687212    5.7849174           NA
#> [4761]           NA    2.4449232    1.6775528    4.9673247    1.8457032
#> [4766]           NA           NA   11.6521568           NA    5.6321864
#> [4771]    0.9540480           NA   12.1773853    0.4559720           NA
#> [4776]           NA           NA           NA           NA           NA
#> [4781]           NA           NA           NA           NA    0.7230437
#> [4786]           NA    1.5481060           NA           NA           NA
#> [4791]    1.7013626           NA    1.9925474           NA           NA
#> [4796]           NA    4.0501847           NA    1.5732721    2.9336040
#> [4801]           NA           NA    1.2153755    2.3473213           NA
#> [4806]    1.6044481    3.8102901    5.9565816           NA           NA
#> [4811]    3.5146675           NA    2.6926224           NA    4.9956584
#> [4816]           NA    7.3882804   31.3160343    1.3993325    6.2274776
#> [4821]           NA    2.9698203           NA    3.2010090           NA
#> [4826]    1.3510920    5.6216455           NA           NA    3.3691561
#> [4831]    2.7835443           NA    0.4399868    2.5057735    5.0695376
#> [4836]           NA    0.6980689    1.8963152    8.0071716    9.3238049
#> [4841]           NA    2.4393957    4.9562755    2.4916747           NA
#> [4846]    1.4161593    1.7179910    2.8897645    2.1166553    2.5877254
#> [4851]   12.7337999           NA    1.2360386    2.1893265    1.5300977
#> [4856]    3.0833626    8.4302454           NA    4.9040179   10.9480925
#> [4861]           NA           NA    2.1738741    3.3114023    6.0667453
#> [4866]           NA           NA    0.6554648           NA    3.5936801
#> [4871]    1.5739572           NA    5.1975174           NA           NA
#> [4876]    3.9125762    9.3439398    7.9241571    3.9933949           NA
#> [4881]    4.6318932           NA           NA    8.3959627           NA
#> [4886]    0.7565725    2.3423707   15.7967987   12.7200508           NA
#> [4891]           NA           NA    3.1725900   11.7995720           NA
#> [4896]    0.9761860           NA    1.1349560           NA           NA
#> [4901]    1.9718618           NA    4.9297872           NA    7.0475721
#> [4906]           NA           NA           NA    2.8053823           NA
#> [4911]   34.1454964  156.3358002           NA           NA           NA
#> [4916]    2.1250823    4.3354549           NA   64.4767151  278.9322815
#> [4921]           NA    0.7963252           NA    3.8422236           NA
#> [4926]   61.7775192  190.2516785    1.4124620    1.3479694           NA
#> [4931]    1.6552913    4.4471312  329.0337830    2.3342044    2.1571195
#> [4936]    0.9733863    2.4092717    4.8433948           NA    2.3092387
#> [4941]  360.7164307    3.0873225    1.7288386           NA    2.3073480
#> [4946]    0.5996385    5.3622589 1420.7687988    7.9223099    5.6030631
#> [4951]           NA    0.6277632    0.8355366    0.4711815    1.3496840
#> [4956]    0.8089792    5.8526330           NA    1.8503476    0.6572140
#> [4961]           NA  305.6041870    1.4397534           NA    0.8994330
#> [4966]  277.0521240    2.2045338           NA           NA           NA
#> [4971]           NA           NA           NA           NA           NA
#> [4976]           NA    0.5602361           NA    1.2226131           NA
#> [4981]           NA           NA           NA    1.3568290    1.7129589
#> [4986]           NA    2.0047822    1.7247094           NA           NA
#> [4991]           NA           NA    6.7786064           NA    2.6411271
#> [4996]           NA           NA    1.9010485    1.7608452           NA
#> [5001]    4.4309907           NA    3.1676409           NA           NA
#> [5006]           NA           NA    3.3830304    4.6565275    3.3298314
#> [5011]           NA    1.5452514           NA           NA    3.5828693
#> [5016]           NA           NA           NA           NA    1.7718617
#> [5021]    0.8061830           NA    1.2403909    4.6554375           NA
#> [5026]           NA           NA           NA           NA           NA
#> [5031]    1.6074916    3.6399906    1.1538744           NA           NA
#> [5036]    4.6306715           NA   22.4013309           NA           NA
#> [5041]           NA    4.1293302    6.8009396           NA   32.1985893
#> [5046]           NA    9.7335100           NA           NA           NA
#> [5051]           NA           NA           NA           NA           NA
#> [5056]           NA           NA    0.5418288           NA           NA
#> [5061]           NA           NA           NA           NA           NA
#> [5066]           NA           NA           NA    0.5632182           NA
#> [5071]           NA           NA    2.9177530           NA    2.1166260
#> [5076]           NA    6.6263289           NA    2.1903484    6.9556012
#> [5081]    3.3954957           NA    3.9068611           NA    1.8365928
#> [5086]           NA    3.1866224    6.6193805    5.9870872           NA
#> [5091]    2.3148339   31.7243080    1.7895136    3.5860963           NA
#> [5096]           NA           NA    1.8591824   77.3616867           NA
#> [5101]    3.4268165    0.5249496    1.5734435    3.8141046           NA
#> [5106]    2.7002668           NA 1096.7601318           NA 1496.8631592
#> [5111]    3.2043941           NA    1.8505754  587.6149292 1741.0694580
#> [5116]           NA  885.2774048           NA   23.7601643           NA
#> [5121]           NA           NA  594.6196899           NA           NA
#> [5126]           NA           NA           NA    0.4923916   29.5300331
#> [5131]           NA           NA           NA           NA           NA
#> [5136]           NA           NA           NA           NA           NA
#> [5141]    1.3024459           NA           NA           NA           NA
#> [5146]           NA           NA           NA           NA           NA
#> [5151]           NA           NA    0.7680741           NA    0.8888112
#> [5156]           NA           NA    2.1178827    1.4857029           NA
#> [5161]    1.1276029    1.3496284    2.1555452           NA           NA
#> [5166]           NA    2.1827545    1.2788655           NA           NA
#> [5171]           NA           NA    1.2924441           NA    0.9934639
#> [5176]           NA           NA           NA           NA    5.3240347
#> [5181]    1.0079803    1.3528888           NA           NA           NA
#> [5186]           NA           NA   10.8723679           NA           NA
#> [5191]           NA           NA           NA           NA    1.9321351
#> [5196]           NA           NA           NA           NA    2.5913424
#> [5201]           NA           NA           NA           NA    2.0170100
#> [5206]    2.6124203           NA           NA           NA   25.0653572
#> [5211]    0.7242321           NA           NA           NA           NA
#> [5216]           NA           NA           NA           NA           NA
#> [5221]    2.9123745           NA    1.8755200           NA    5.4409308
#> [5226]           NA    1.6049031           NA    4.8650875    3.9305305
#> [5231]    2.3677256    2.1769772           NA    6.9278378    0.9471752
#> [5236]   11.2096748    8.1439409           NA    7.7992425    8.1538477
#> [5241]    7.7033796           NA   15.1453743   31.8052731   18.0042858
#> [5246]           NA    1.2677478    5.5277863    2.1457639           NA
#> [5251]    3.4404881    6.6042099           NA    4.3178186   10.6584396
#> [5256]    4.6253743           NA    4.4684582    9.8839989           NA
#> [5261]    0.4913557           NA    4.2288108           NA    2.3422270
#> [5266]  220.2428894   76.3024292    2.4397397           NA    0.7708665
#> [5271]    0.5308517  153.5867767           NA    0.7601256           NA
#> [5276]    5.8568654    3.3581190    1.1768376           NA    1.9733516
#> [5281]    8.9577475           NA           NA    1.6991717           NA
#> [5286]           NA           NA           NA           NA           NA
#> [5291]    0.6544989    0.8063468           NA           NA    0.5237735
#> [5296]           NA    1.2291242           NA           NA           NA
#> [5301]    0.4108943   11.5966806           NA           NA           NA
#> [5306]           NA    1.5359516           NA           NA           NA
#> [5311]           NA           NA           NA           NA           NA
#> [5316]    0.5914992           NA           NA           NA           NA
#> [5321]           NA           NA    1.5501552           NA           NA
#> [5326]           NA           NA           NA           NA           NA
#> [5331]    0.4674177           NA           NA           NA           NA
#> [5336]           NA    1.4722780           NA   10.3540297   12.8971653
#> [5341]   76.4729843    3.3384745           NA           NA           NA
#> [5346]           NA           NA           NA           NA           NA
#> [5351]           NA           NA           NA           NA           NA
#> [5356]           NA           NA           NA           NA           NA
#> [5361]           NA    8.8360243           NA    0.8269219           NA
#> [5366]           NA           NA           NA           NA           NA
#> [5371]           NA           NA           NA    0.8899398    6.1822929
#> [5376]    1.4949089           NA           NA           NA           NA
#> [5381]           NA           NA           NA           NA           NA
#> [5386]           NA           NA    6.1136923   45.9732246    1.8630898
#> [5391]           NA           NA           NA           NA           NA
#> [5396]           NA           NA           NA           NA           NA
#> [5401]           NA           NA           NA           NA           NA
#> [5406]           NA           NA           NA           NA           NA
#> [5411]           NA           NA           NA    0.4607324           NA
#> [5416]           NA           NA           NA           NA           NA
#> [5421]           NA           NA    2.4314377           NA           NA
#> [5426]           NA           NA           NA           NA           NA
#> [5431]           NA           NA           NA           NA           NA
#> [5436]           NA           NA           NA           NA           NA
#> [5441]           NA           NA           NA           NA           NA
#> [5446]           NA           NA           NA           NA           NA
#> [5451]           NA           NA           NA           NA    0.3267280
#> [5456]    7.7629838           NA           NA           NA           NA
#> [5461]           NA    0.9005343           NA           NA           NA
#> [5466]           NA    6.4958630    0.6801585    1.1879852           NA
#> [5471]   13.1560583           NA           NA           NA           NA
#> [5476]           NA    2.3879337           NA           NA           NA
#> [5481]           NA           NA           NA           NA           NA
#> [5486]           NA           NA           NA           NA           NA
#> [5491]           NA           NA    0.7733446           NA    1.1475980
#> [5496]           NA    3.0229218   14.0746317           NA           NA
#> [5501]           NA           NA           NA           NA           NA
#> [5506]           NA           NA           NA    0.5247985           NA
#> [5511]           NA           NA           NA           NA           NA
#> [5516]           NA           NA           NA           NA    1.2050325
#> [5521]    9.2619877           NA    0.7634576           NA           NA
#> [5526]           NA           NA           NA           NA           NA
#> [5531]           NA           NA           NA    1.0241749    1.0909539
#> [5536]    5.3293109           NA           NA           NA           NA
#> [5541]           NA    2.7063551           NA    3.4095821           NA
#> [5546]           NA           NA           NA           NA           NA
#> [5551]           NA           NA           NA    0.6897098           NA
#> [5556]           NA           NA           NA           NA           NA
#> [5561]    1.0274373           NA           NA           NA           NA
#> [5566]           NA           NA           NA           NA           NA
#> [5571]           NA           NA           NA           NA    0.8178927
#> [5576]           NA           NA           NA           NA           NA
#> [5581]    1.5089374    0.7430726           NA    1.1275156           NA
#> [5586]           NA           NA           NA           NA           NA
#> [5591]           NA           NA           NA           NA           NA
#> [5596]           NA           NA           NA           NA           NA
#> [5601]           NA           NA           NA           NA           NA
#> [5606]   21.9422588    1.3811653           NA    3.5942285           NA
#> [5611]           NA    1.6271605           NA           NA           NA
#> [5616]           NA           NA           NA           NA           NA
#> [5621]           NA           NA           NA           NA           NA
#> [5626]    2.1611414           NA           NA           NA           NA
#> [5631]           NA    0.8879982           NA    0.8763292           NA
#> [5636]           NA           NA           NA    1.7225560   13.2923336
#> [5641]           NA           NA           NA           NA           NA
#> [5646]           NA           NA           NA           NA           NA
#> [5651]           NA           NA           NA           NA           NA
#> [5656]           NA           NA           NA           NA           NA
#> [5661]    3.3895564   21.7352753           NA           NA           NA
#> [5666]           NA           NA           NA           NA           NA
#> [5671]           NA           NA           NA           NA           NA
#> [5676]           NA           NA           NA           NA           NA
#> [5681]           NA           NA           NA           NA           NA
#> [5686]           NA           NA           NA           NA    0.4632308
#> [5691]           NA           NA           NA    1.5177442           NA
#> [5696]           NA           NA           NA           NA           NA
#> [5701]    1.9604896           NA           NA           NA           NA
#> [5706]           NA           NA           NA    5.8416729           NA
#> [5711]    0.6393901    2.9566762    0.3774208           NA           NA
#> [5716]           NA           NA           NA           NA           NA
#> [5721]           NA    1.6599923    3.0378304           NA           NA
#> [5726]           NA           NA           NA    2.7158394           NA
#> [5731]           NA           NA           NA           NA           NA
#> [5736]           NA           NA           NA           NA           NA
#> [5741]           NA           NA           NA           NA           NA
#> [5746]           NA           NA           NA           NA           NA
#> [5751]           NA           NA           NA           NA           NA
#> [5756]           NA           NA           NA           NA           NA
#> [5761]           NA    0.6954392           NA           NA           NA
#> [5766]    1.9243698           NA           NA           NA           NA
#> [5771]           NA           NA           NA    1.4208319           NA
#> [5776]           NA           NA           NA    0.3644979           NA
#> [5781]           NA           NA           NA           NA           NA
#> [5786]           NA           NA           NA           NA           NA
#> [5791]           NA           NA           NA           NA           NA
#> [5796]           NA           NA           NA           NA    0.9764859
#> [5801]           NA           NA           NA           NA           NA
#> [5806]           NA           NA           NA    1.7312529    1.9927244
#> [5811]    8.3358564           NA           NA           NA           NA
#> [5816]           NA           NA           NA           NA           NA
#> [5821]           NA           NA           NA           NA           NA
#> [5826]           NA           NA           NA           NA           NA
#> [5831]           NA           NA    0.3344689           NA           NA
#> [5836]           NA    1.5944563           NA           NA           NA
#> [5841]           NA           NA           NA           NA           NA
#> [5846]    1.4439087    2.7181752           NA           NA           NA
#> [5851]           NA    0.9094949    1.2030648           NA           NA
#> [5856]           NA           NA           NA    2.7429266    6.6508756
#> [5861]           NA           NA           NA           NA           NA
#> [5866]           NA           NA           NA    2.8126271    3.6208489
#> [5871]    6.5295534           NA    0.3424659           NA           NA
#> [5876]           NA           NA           NA           NA           NA
#> [5881]           NA           NA           NA           NA           NA
#> [5886]    0.5115961    0.5035965           NA           NA           NA
#> [5891]           NA           NA           NA           NA           NA
#> [5896]           NA           NA           NA           NA           NA
#> [5901]           NA           NA           NA           NA           NA
#> [5906]           NA           NA           NA           NA           NA
#> [5911]    1.0872059           NA           NA    1.5785052           NA
#> [5916]    0.2461324           NA           NA           NA           NA
#> [5921]           NA           NA    1.9896445           NA           NA
#> [5926]           NA           NA           NA           NA    0.8427312
#> [5931]    0.7660883           NA           NA           NA           NA
#> [5936]           NA    2.3450923    2.4805903           NA           NA
#> [5941]           NA           NA    0.8671566           NA           NA
#> [5946]           NA    0.6639645           NA           NA           NA
#> [5951]           NA           NA           NA           NA           NA
#> [5956]           NA           NA           NA    0.5334827    0.4702013
#> [5961]           NA           NA           NA           NA           NA
#> [5966]           NA           NA    3.1127882   64.2761841    5.7723532
#> [5971]           NA           NA           NA           NA           NA
#> [5976]           NA           NA           NA           NA           NA
#> [5981]    0.9449326           NA           NA           NA    9.8559513
#> [5986]           NA    1.5376849           NA           NA           NA
#> [5991]    0.6502208           NA    0.8867813    0.9406697           NA
#> [5996]           NA           NA           NA           NA           NA
#> [6001]           NA           NA           NA           NA           NA
#> [6006]           NA    2.6839008           NA    3.2349586   26.2348919
#> [6011]    2.3463531           NA    0.7232664    0.5971866           NA
#> [6016]           NA           NA           NA           NA           NA
#> [6021]    2.7867749    1.2694967           NA    5.0291767           NA
#> [6026]           NA           NA           NA           NA           NA
#> [6031]           NA           NA           NA           NA           NA
#> [6036]           NA           NA           NA           NA           NA
#> [6041]           NA           NA           NA    1.4869373           NA
#> [6046]    1.9182748           NA           NA           NA           NA
#> [6051]           NA           NA           NA    0.8268527    4.4961567
#> [6056]           NA           NA    0.4737805           NA           NA
#> [6061]           NA           NA           NA           NA           NA
#> [6066]           NA           NA           NA    2.8711464           NA
#> [6071]           NA           NA           NA           NA           NA
#> [6076]    3.6332841           NA    1.5385498           NA           NA
#> [6081]           NA    4.7165794           NA           NA           NA
#> [6086]           NA           NA           NA           NA           NA
#> [6091]    1.2112534           NA           NA           NA           NA
#> [6096]           NA           NA    2.5973957    4.9447703           NA
#> [6101]           NA           NA           NA           NA           NA
#> [6106]           NA           NA           NA    0.9545295           NA
#> [6111]           NA           NA           NA    1.4072028    1.8630619
#> [6116]    1.4024746           NA           NA           NA           NA
#> [6121]           NA           NA           NA           NA    0.5282810
#> [6126]    1.8168713    4.9301190           NA           NA           NA
#> [6131]           NA           NA           NA           NA           NA
#> [6136]           NA           NA           NA           NA           NA
#> [6141]           NA           NA           NA           NA           NA
#> [6146]           NA           NA           NA           NA           NA
#> [6151]           NA    0.1499837    0.7057289           NA           NA
#> [6156]           NA           NA           NA           NA           NA
#> [6161]           NA    1.6758749    1.9225767           NA           NA
#> [6166]           NA           NA           NA    0.6456749    1.0736265
#> [6171]    0.6631852           NA           NA           NA           NA
#> [6176]           NA           NA           NA           NA           NA
#> [6181]           NA           NA           NA           NA           NA
#> [6186]           NA           NA           NA           NA           NA
#> [6191]    2.0254166    0.8686433           NA           NA           NA
#> [6196]           NA    2.9635856           NA           NA           NA
#> [6201]           NA           NA           NA           NA           NA
#> [6206]           NA           NA           NA           NA    2.8306408
#> [6211]    0.6591658           NA    1.8536581           NA    0.7700182
#> [6216]           NA           NA           NA           NA           NA
#> [6221]           NA    0.6434809           NA           NA    3.0102704
#> [6226]           NA    0.6942499    2.7054408           NA           NA
#> [6231]           NA           NA           NA    6.5840912           NA
#> [6236]           NA           NA           NA    0.4648814           NA
#> [6241]    2.2047083           NA           NA           NA           NA
#> [6246]           NA    0.8025916           NA           NA    0.9868059
#> [6251]           NA           NA    0.9812470    1.6068337           NA
#> [6256]           NA           NA           NA    1.6466388    0.6577185
#> [6261]    3.3152702           NA           NA           NA           NA
#> [6266]           NA           NA           NA           NA           NA
#> [6271]           NA    0.3456087    1.4819642    1.6930362           NA
#> [6276]           NA           NA           NA           NA    0.6172115
#> [6281]           NA    4.8450933   10.5450792   48.2902794    0.6500265
#> [6286]           NA           NA           NA           NA           NA
#> [6291]           NA           NA           NA    0.6208660           NA
#> [6296]    0.6039580           NA           NA    0.9597225           NA
#> [6301]           NA           NA           NA           NA           NA
#> [6306]    0.3537683           NA           NA           NA    0.8526208
#> [6311]           NA           NA           NA           NA           NA
#> [6316]           NA    0.2884314    0.8374825           NA           NA
#> [6321]           NA           NA           NA           NA           NA
#> [6326]           NA           NA    1.8498940           NA           NA
#> [6331]           NA           NA           NA           NA           NA
#> [6336]           NA    2.6492484           NA    0.8956540    1.2795352
#> [6341]    3.1287794           NA           NA           NA           NA
#> [6346]           NA    2.0273194           NA           NA           NA
#> [6351]           NA    3.7718840    1.8026490           NA           NA
#> [6356]           NA           NA           NA           NA    0.7220110
#> [6361]           NA           NA           NA    0.7175305    4.3183942
#> [6366]           NA           NA           NA           NA           NA
#> [6371]           NA           NA           NA           NA    1.4981960
#> [6376]           NA           NA           NA           NA           NA
#> [6381]           NA           NA           NA           NA           NA
#> [6386]           NA           NA    0.2836370           NA    0.8527241
#> [6391]    3.5981882           NA           NA           NA           NA
#> [6396]           NA           NA           NA           NA           NA
#> [6401]    0.3067524           NA           NA           NA           NA
#> [6406]    1.3901409           NA           NA           NA           NA
#> [6411]           NA           NA           NA           NA           NA
#> [6416]           NA           NA           NA           NA    2.7463164
#> [6421]           NA           NA           NA           NA    2.1976302
#> [6426]           NA    0.2309106           NA    0.2099868           NA
#> [6431]           NA           NA           NA           NA           NA
#> [6436]           NA    0.8203602           NA    1.9904572    4.0084724
#> [6441]           NA           NA    0.5368133           NA           NA
#> [6446]           NA           NA    0.4482878    1.4325606           NA
#> [6451]           NA           NA           NA    2.3086529           NA
#> [6456]           NA           NA           NA           NA    0.4549935
#> [6461]           NA           NA           NA           NA           NA
#> [6466]           NA           NA           NA           NA           NA
#> [6471]           NA           NA           NA    3.1426587    1.3987031
#> [6476]           NA           NA           NA           NA           NA
#> [6481]           NA           NA           NA    0.4663780           NA
#> [6486]           NA           NA    2.3534548           NA           NA
#> [6491]           NA           NA           NA           NA           NA
#> [6496]           NA           NA           NA           NA           NA
#> [6501]           NA           NA           NA           NA           NA
#> [6506]           NA           NA           NA           NA           NA
#> [6511]           NA           NA           NA           NA           NA
#> [6516]           NA           NA           NA           NA           NA
#> [6521]           NA           NA           NA           NA           NA
#> [6526]           NA           NA           NA    3.8060784           NA
#> [6531]           NA           NA           NA           NA           NA
#> [6536]    0.4556686           NA           NA           NA           NA
#> [6541]           NA           NA           NA           NA           NA
#> [6546]           NA           NA           NA           NA           NA
#> [6551]           NA    1.3394214           NA    1.1004189           NA
#> [6556]           NA           NA           NA           NA           NA
#> [6561]           NA           NA           NA           NA    2.4211915
#> [6566]           NA    3.3820996           NA           NA           NA
#> [6571]           NA           NA           NA           NA           NA
#> [6576]           NA           NA           NA           NA           NA
#> [6581]           NA           NA           NA           NA           NA
#> [6586]           NA   31.4883842           NA           NA           NA
#> [6591]           NA           NA           NA           NA           NA
#> [6596]    0.7637222           NA           NA           NA           NA
#> [6601]           NA           NA           NA           NA    2.0601268
#> [6606]           NA    0.7897440           NA           NA           NA
#> [6611]    1.1024669           NA           NA    1.4127746           NA
#> [6616]           NA           NA           NA           NA           NA
#> [6621]           NA           NA           NA           NA           NA
#> [6626]    0.7815835           NA           NA           NA           NA
#> [6631]           NA           NA           NA           NA           NA
#> [6636]           NA           NA           NA    0.3922873    2.3492901
#> [6641]           NA    1.7412961           NA           NA           NA
#> [6646]           NA           NA    1.0913932           NA           NA
#> [6651]           NA           NA           NA           NA           NA
#> [6656]           NA           NA           NA           NA           NA
#> [6661]           NA    2.1832561    5.6013675           NA    0.5410951
#> [6666]           NA           NA           NA           NA           NA
#> [6671]           NA           NA           NA           NA           NA
#> [6676]           NA           NA           NA           NA           NA
#> [6681]           NA           NA           NA           NA           NA
#> [6686]           NA           NA           NA           NA           NA
#> [6691]           NA           NA           NA           NA    1.5191215
#> [6696]    8.5703373           NA           NA           NA           NA
#> [6701]           NA           NA           NA           NA           NA
#> [6706]           NA    1.4032021           NA           NA           NA
#> [6711]           NA           NA           NA           NA           NA
#> [6716]           NA           NA           NA           NA           NA
#> [6721]           NA           NA           NA           NA           NA
#> [6726]           NA           NA           NA    2.8650708           NA
#> [6731]    1.6290002           NA           NA           NA           NA
#> [6736]           NA    0.6252948           NA           NA           NA
#> [6741]    2.6510727    5.6316738           NA           NA           NA
#> [6746]           NA           NA           NA           NA           NA
#> [6751]    0.6707575    1.2557933    2.8557181           NA           NA
#> [6756]           NA           NA           NA           NA           NA
#> [6761]           NA           NA           NA           NA           NA
#> [6766]           NA           NA           NA           NA    6.8578634
#> [6771]           NA    0.6140221           NA           NA           NA
#> [6776]           NA           NA           NA    4.2484360           NA
#> [6781]    0.6619285    1.2980875    3.2068131           NA    1.3282340
#> [6786]           NA           NA           NA           NA           NA
#> [6791]           NA    1.5175761           NA           NA           NA
#> [6796]           NA           NA           NA           NA           NA
#> [6801]    2.3767309           NA    0.8093471           NA           NA
#> [6806]           NA           NA           NA           NA           NA
#> [6811]    0.6040459           NA           NA           NA           NA
#> [6816]    0.6218860           NA           NA           NA           NA
#> [6821]           NA           NA           NA           NA           NA
#> [6826]           NA    1.4518211           NA           NA           NA
#> [6831]           NA           NA           NA    1.7191668           NA
#> [6836]    1.9510572           NA           NA           NA    0.3967183
#> [6841]           NA           NA           NA           NA           NA
#> [6846]    1.0216656           NA    3.4807718   12.6569872           NA
#> [6851]    1.2336719   11.7144327    0.6784623           NA           NA
#> [6856]           NA           NA           NA           NA           NA
#> [6861]           NA           NA           NA           NA           NA
#> [6866]           NA           NA           NA    1.0983104    0.8703533
#> [6871]           NA           NA           NA    0.9070129           NA
#> [6876]           NA           NA           NA    2.6424198           NA
#> [6881]           NA           NA           NA           NA           NA
#> [6886]           NA           NA           NA           NA           NA
#> [6891]           NA           NA           NA           NA           NA
#> [6896]           NA           NA           NA           NA           NA
#> [6901]           NA           NA           NA    1.1471686           NA
#> [6906]    0.9019348           NA           NA           NA           NA
#> [6911]           NA    2.5049481   11.4490557           NA    0.5566154
#> [6916]           NA           NA           NA           NA           NA
#> [6921]           NA           NA           NA           NA           NA
#> [6926]           NA    1.9753987           NA           NA           NA
#> [6931]           NA           NA    2.3320930    3.7091351    2.4257834
#> [6936]           NA           NA           NA    0.7362632           NA
#> [6941]           NA           NA           NA    0.8419358           NA
#> [6946]    3.9386895           NA           NA           NA           NA
#> [6951]    0.9128963           NA           NA           NA           NA
#> [6956]           NA           NA           NA           NA    1.6723500
#> [6961]           NA           NA           NA           NA           NA
#> [6966]    1.3298150           NA           NA           NA           NA
#> [6971]           NA           NA           NA           NA           NA
#> [6976]           NA           NA           NA           NA           NA
#> [6981]           NA           NA           NA           NA           NA
#> [6986]    0.6335756           NA           NA           NA           NA
#> [6991]           NA           NA           NA           NA           NA
#> [6996]           NA           NA           NA           NA    0.6562991
#> [7001]           NA           NA           NA    3.2722898           NA
#> [7006]           NA           NA           NA           NA           NA
#> [7011]    2.3044112           NA           NA           NA           NA
#> [7016]           NA    1.4757828           NA           NA           NA
#> [7021]           NA           NA           NA           NA           NA
#> [7026]           NA           NA           NA           NA    8.4148054
#> [7031]           NA    0.3076566    1.2632453    0.8317384    6.0139632
#> [7036]    2.7857358           NA    1.4718702           NA           NA
#> [7041]           NA    2.8902125           NA           NA           NA
#> [7046]    3.4636676           NA           NA           NA           NA
#> [7051]           NA           NA           NA           NA           NA
#> [7056]    2.9858587           NA           NA    1.1537194    6.6131492
#> [7061]           NA           NA           NA           NA           NA
#> [7066]    0.2267639    0.5474497    0.4946014           NA           NA
#> [7071]           NA    1.2936714           NA           NA           NA
#> [7076]           NA           NA           NA           NA           NA
#> [7081]           NA           NA           NA           NA           NA
#> [7086]           NA           NA           NA           NA           NA
#> [7091]           NA           NA           NA           NA           NA
#> [7096]           NA           NA           NA           NA           NA
#> [7101]           NA           NA           NA           NA    1.6368855
#> [7106]    0.9594902    1.4098917           NA           NA           NA
#> [7111]           NA           NA    0.7878828           NA           NA
#> [7116]           NA           NA           NA    0.6673341           NA
#> [7121]           NA           NA           NA    3.1816411           NA
#> [7126]           NA           NA           NA           NA           NA
#> [7131]           NA           NA    1.2840652           NA    2.6560736
#> [7136]   19.9554462           NA           NA           NA           NA
#> [7141]           NA           NA           NA           NA           NA
#> [7146]           NA           NA           NA    1.0239617           NA
#> [7151]    1.8550906    2.3586714           NA           NA           NA
#> [7156]           NA           NA           NA           NA           NA
#> [7161]           NA           NA           NA           NA           NA
#> [7166]           NA           NA           NA    0.4221451           NA
#> [7171]           NA           NA           NA           NA           NA
#> [7176]           NA           NA           NA           NA           NA
#> [7181]           NA           NA           NA           NA           NA
#> [7186]           NA           NA           NA    2.8507216    3.4885705
#> [7191]    7.3413062           NA           NA           NA           NA
#> [7196]           NA           NA           NA           NA           NA
#> [7201]           NA           NA   35.7378654           NA    1.4843854
#> [7206]    0.8229836           NA    1.9679027           NA           NA
#> [7211]           NA           NA           NA           NA           NA
#> [7216]           NA           NA           NA           NA           NA
#> [7221]           NA           NA           NA           NA           NA
#> [7226]           NA           NA           NA           NA           NA
#> [7231]    0.9418428           NA    2.5392017           NA           NA
#> [7236]           NA           NA           NA           NA           NA
#> [7241]           NA           NA           NA           NA           NA
#> [7246]           NA           NA           NA           NA           NA
#> [7251]           NA           NA           NA           NA           NA
#> [7256]    0.9196062           NA           NA           NA    4.2101269
#> [7261]           NA           NA           NA    0.8723121           NA
#> [7266]    1.1009536           NA    2.2867596    5.5058069           NA
#> [7271]           NA           NA           NA           NA           NA
#> [7276]           NA           NA    1.2713206           NA           NA
#> [7281]           NA           NA           NA           NA           NA
#> [7286]           NA    2.4941492           NA           NA           NA
#> [7291]           NA           NA           NA           NA           NA
#> [7296]           NA           NA    1.5185130    2.7117639           NA
#> [7301]           NA           NA           NA           NA           NA
#> [7306]           NA           NA           NA           NA           NA
#> [7311]           NA           NA           NA           NA           NA
#> [7316]           NA    4.5919437    5.1406364           NA    2.8025935
#> [7321]    5.8709002   13.7791338   14.5640020    4.8297606    7.8658409
#> [7326]    6.8229294   27.7137413           NA    5.3379407   14.4617805
#> [7331]    4.4964433   16.1921463   10.2128115    4.2068844   10.3527794
#> [7336]   30.8382893           NA    6.8301725    9.5161114   46.6889000
#> [7341]    5.9609809   13.2284927    7.8532238   36.7056198    8.2213917
#> [7346]           NA    7.4940300   11.8976650   13.4008360   19.2198009
#> [7351]    2.2085142   16.2607841   27.6975002   84.5502777           NA
#> [7356]    8.9375477   17.9089260   15.0652647    9.7659874   20.4718914
#> [7361]   10.5261488  102.4522476   17.9931507           NA   11.4199753
#> [7366]   19.1676826   17.0927010   24.3487606    6.6103988    8.1302404
#> [7371]    9.6394157   30.0782166           NA   10.6189022    3.9972832
#> [7376]   13.7391968   28.9560966    6.7734051    8.2172832   10.3078299
#> [7381]   20.1655922           NA   18.3504696    2.8396056   27.5377102
#> [7386]    4.3330150    4.9756093    8.2070942    2.5828452    7.6423254
#> [7391]           NA    7.4956326    3.3020027    8.2716713   10.5372095
#> [7396]    5.9630933    5.2237558    9.0436430    7.9005804           NA
#> [7401]    4.6265149    4.5348096   14.0217648   11.7508678    5.1471868
#> [7406]   11.1270819    7.9933724   12.3714352           NA           NA
#> [7411]    9.6415024    1.0363822    2.1618273    2.2038519   16.1064682
#> [7416]    6.1964874    5.3220701           NA    1.6039859   98.4771194
#> [7421]    4.0282149    2.6477625   16.8007278    3.5877471    2.6565950
#> [7426]    5.3537140           NA   39.1409950    3.9032741   51.0578613
#> [7431]   14.7823324           NA   23.7130947   41.8512573   27.0040703
#> [7436]    8.8542757   40.3777084   36.5384369    6.2642756   10.2587223
#> [7441]           NA   25.8907166   44.1283989   16.7547779    1.5664260
#> [7446]   36.2730598   45.0348854    5.4926982    9.8852091           NA
#> [7451]   38.9618721   45.9797630           NA    3.3837142           NA
#> [7456]    1.5297805    2.0968738           NA    4.4807029           NA
#> [7461]           NA           NA    0.6716859           NA    4.6078916
#> [7466]    2.3965619    0.9893416           NA           NA    1.2310627
#> [7471]           NA    5.1445694    1.9888287           NA    0.6328241
#> [7476]    0.5137627           NA    5.9770460    0.9208446           NA
#> [7481]           NA    1.4403317           NA           NA           NA
#> [7486]    4.3081975    0.9803630    0.8477652    0.4548255   11.3158970
#> [7491]    1.3294666           NA           NA           NA    1.6702332
#> [7496]           NA    4.7679958    0.8518687    1.8222345    2.7682319
#> [7501]           NA           NA           NA           NA           NA
#> [7506]           NA           NA           NA           NA           NA
#> [7511]           NA           NA           NA    4.0749702           NA
#> [7516]    0.4489682           NA           NA           NA           NA
#> [7521]           NA           NA           NA           NA           NA
#> [7526]           NA           NA           NA           NA           NA
#> [7531]           NA           NA           NA    0.6329405    1.6010697
#> [7536]           NA           NA           NA           NA           NA
#> [7541]           NA           NA           NA           NA           NA
#> [7546]           NA           NA           NA           NA           NA
#> [7551]    0.1622699    0.8471114           NA    0.4407594           NA
#> [7556]           NA           NA           NA           NA           NA
#> [7561]           NA           NA           NA           NA           NA
#> [7566]    1.1682943           NA    1.4405993           NA    2.0458810
#> [7571]    6.8692994           NA           NA           NA    2.7137775
#> [7576]           NA    1.1100407           NA           NA           NA
#> [7581]           NA           NA           NA           NA           NA
#> [7586]           NA           NA           NA           NA           NA
#> [7591]    0.3899231           NA           NA           NA           NA
#> [7596]           NA           NA           NA           NA           NA
#> [7601]           NA           NA

## We can replace the precursor intensity values of the originating
## object:
sps_dda$precursorIntensity <- pi
sps_dda |>
    filterMsLevel(2L) |>
    precursorIntensity()
#>    [1]    0.2562894    0.6533012           NA    0.9115737    2.0881963
#>    [6]    0.4161463    1.6393325    1.9403350    0.2138104    2.2869656
#>   [11]    0.3581794    1.2965702    7.1932635    1.7952728    1.7991002
#>   [16]    4.6187558    2.3082116    2.1572299    7.6883049    0.6671617
#>   [21]    1.3682123    1.7227559    0.8182324    1.3030148    0.4186687
#>   [26]    0.4893252           NA           NA    0.6470237           NA
#>   [31]    1.2660308    0.3448766    1.0501561    1.0818608    0.1523102
#>   [36]    1.6358998    1.0994979    2.0477426    0.9073558    0.5244763
#>   [41]    2.2316427    2.6152663    1.7466167    1.7643924    1.0328368
#>   [46]    2.0097375    0.3149102    0.5953222    0.8350294    1.0704968
#>   [51]    1.3077880    1.5747164    0.3147899    0.4084390    0.4539037
#>   [56]    0.9779218    2.4162381    6.3833795    2.8862731    1.2910393
#>   [61]   10.6581869    1.4951602    3.7959058    2.8722730    2.4529448
#>   [66]    5.3233647    3.5772564    4.4303422    2.9447591    2.1176453
#>   [71]    5.0967083    3.3420610    2.4258153    0.8650878    7.3779054
#>   [76]    6.8362355    2.1940181    0.7469152    2.0079441    6.3011317
#>   [81]   10.4023485    3.3065796    2.3813672    1.3428380    4.0137057
#>   [86]    1.4098256    2.4288177    1.3962808    7.4319925   20.5047512
#>   [91]    0.9047846    1.3858606    2.8306339    3.7321482    2.8828564
#>   [96]    5.5602937  115.1193542    2.0473588    4.9510341  118.5648346
#>  [101]    2.0066054    2.9266124    2.4156189    4.2713437           NA
#>  [106]    0.2551613    2.6899714    5.8423100   11.0782356    0.8772338
#>  [111]    2.3091309    3.4256361    3.7716985    1.5463245    1.8332181
#>  [116]    1.1230040    3.6158812    1.1808953    1.2916937    3.6537952
#>  [121]    1.9253193    6.6556292    2.8096755    0.4722714    1.5738993
#>  [126]    3.1981614    2.3436296    1.1402670    4.2488189    5.5579276
#>  [131]    1.3360999    1.4311922  165.9235382    1.0471303    2.2803576
#>  [136]    2.3772638    1.4516939    2.6042576    1.4513292  110.1937103
#>  [141]    1.6985731    7.4143949    2.9037418    4.3727541    2.5551207
#>  [146]    3.4643288    3.0462031    5.5572038    5.8211880    3.4240117
#>  [151]    3.9230976  326.0313110    2.8209546    4.4502177   45.2657852
#>  [156]    2.6507335    2.4535000    5.7406173    5.1763091    1.5400567
#>  [161]    1.0795214    1.5230681    3.4662752    4.3179688    0.7036181
#>  [166]    3.9843678    3.7730997    0.8382843    0.5566598    0.8787179
#>  [171]    0.4405660    2.2968674    0.4199017           NA    0.9166892
#>  [176]    3.8255417    0.5752081    0.5180702    1.5857564    1.6556677
#>  [181]    0.5855740    1.0657172    0.4307829    1.3963100    2.4678311
#>  [186]    0.9768236    1.0707787    0.8175089    1.4743868           NA
#>  [191]           NA    5.0737371    0.5766439    1.4214748    0.2014372
#>  [196]    2.2585330    0.7659990    0.6345024    1.1232179    1.2145635
#>  [201]   10.4214382    1.5072360    1.6478479    2.0655625    0.5699065
#>  [206]    1.0214655    0.6936538    2.5300288    0.5699503    0.4178057
#>  [211]    2.3085105    7.4867916    2.4417286    3.0711961    2.6359253
#>  [216]    1.0029373    0.3156207    3.3271339    0.7859326    0.9116367
#>  [221]    2.2751508    3.6905310    1.7462349    0.6127930    0.6677385
#>  [226]    0.3307993    2.4790754    0.9691072    3.0772917    0.3885723
#>  [231]    0.3215049    1.6329483    4.4057989    0.4121964    0.8756598
#>  [236]    1.1511103    1.2199212    2.9056976    0.9633790    1.1713226
#>  [241]    2.6179757    7.3096509    4.6009355    0.6218465    4.1894031
#>  [246]   10.0505095   12.7552290   10.4093504    2.2360206    1.2496341
#>  [251]    0.4214600    1.4234974    5.9685678    1.4870299    6.5259218
#>  [256]   10.9112473    3.0024679    5.5636888    1.0834279    6.3247514
#>  [261]    8.4820938    1.0724249    1.7462807    0.2578186    2.8363187
#>  [266]    2.7652164    9.1981554    2.7739875   27.5907974    3.4431446
#>  [271]    7.6219230    7.2448454    0.9365459    1.4254460    1.9484344
#>  [276]   25.4685478    3.3151047    5.4201798    1.0591918           NA
#>  [281]    2.2389860    7.2797980  177.9112701  712.0562744    1.9180223
#>  [286]    1.0850360   15.4796858    2.2603140    1.6407841    3.5157232
#>  [291]    1.3970622    2.8673556    4.1254120    2.8693426    4.2749281
#>  [296]    0.8203884    2.7943869    3.3467057    3.0753074    2.7253366
#>  [301]    2.1626289    5.0227842    2.3628030    1.2205384    0.8150464
#>  [306]    3.2100937 4247.9296875           NA 4877.1162109    1.7616867
#>  [311]    1.8174063    0.7508621    3.5258093    2.7256949    2.5574954
#>  [316]    1.5129316    0.6094913    2.6934810    0.9192376    1.3823618
#>  [321]  111.0667496    0.6147639    1.4611453    0.7056657    0.4673733
#>  [326]    0.5605560    1.7962961    0.7591861    0.6475862    1.0416414
#>  [331]   13.4244280    0.8334653    1.4189600    0.8297019    2.9611456
#>  [336]    1.5615076           NA    1.4051919           NA    0.9027803
#>  [341]           NA    3.6805460  145.7117004    0.3470792    1.5938562
#>  [346]    1.4932191    4.3753552    0.6481672    2.1519599    1.0128362
#>  [351]    0.6915093    1.9947214           NA    0.2430045    2.9182062
#>  [356]    0.6795040    1.6664841    2.3586757    0.8883650    3.2617228
#>  [361]    2.8392348    1.6086547    0.6026787    1.2004064    1.3173006
#>  [366]    3.6571672    2.2624974    0.9398944    3.5710230    1.0233446
#>  [371]    1.3720112    1.0055754    0.5655854    1.5054272    1.0397023
#>  [376]    3.3238027    2.1077371    2.7032313    3.8104489    2.8180630
#>  [381]    7.8234811    4.9062996    1.3160198    1.0076615    1.0950712
#>  [386]    3.9908450    4.2435541    0.7174511    5.2825084    0.8802158
#>  [391]    0.3888731    0.7251250    1.0856016    0.5659533    0.4917859
#>  [396]    0.4981284    0.9569623    0.7542380    1.5303959    2.5028656
#>  [401]    1.2001288    1.7258205    0.5163053    1.1474305    2.1486368
#>  [406]    2.4524887    3.0907106    3.9163256    6.1858454    6.0148554
#>  [411]    3.3022101    6.8535738    0.9091500    5.3752904    2.6620142
#>  [416]   14.2303267    0.3268394    3.2703023    3.7256567    3.4891803
#>  [421]    6.1556778    1.2317547    3.0012579    6.3596826    0.6037928
#>  [426]    0.5698133    3.7267346   10.2576380    0.8706866    4.9864445
#>  [431]    4.3741260    1.0901091   10.9061537    4.1417003    0.5189514
#>  [436]    8.2503548    2.2269182           NA    0.3962348    0.3956501
#>  [441]    2.1887872    1.7824746    3.7205944    3.6917150    0.7435969
#>  [446]    9.6342754   24.0429783    1.5591800    1.9394968    3.0097637
#>  [451]    5.7848148    9.7665796    2.0749505    0.4870613    2.6161067
#>  [456]    0.6431220    1.2651863    3.6852174    1.1431226   21.9405651
#>  [461]    1.2046832    1.8209703    0.5066832    0.9095992    9.7609291
#>  [466]    3.3460293    0.4121834    0.9202868    0.6617500    2.0171058
#>  [471]    1.1644038    2.6082158    3.6380553    0.8339515    1.4020016
#>  [476]    7.2250385    0.7268345    0.7294782    0.9507068    2.5481384
#>  [481]    3.6101770    0.6119207    5.6888528   16.1643982    2.6750910
#>  [486]    4.8989611    0.4897856   15.6936617    3.9424517    1.3334647
#>  [491]    0.4453856    3.3320382    7.2846007    3.1082804    3.1209931
#>  [496]    9.3145094    0.8143211    1.1926577    0.6434940    0.6482291
#>  [501]    2.3913691    2.1481240    2.7833135    4.5657282    5.3265414
#>  [506]   10.3909426   15.4557104    0.6454072   43.3171730    1.4262301
#>  [511]    2.5555761    1.7280343    2.7765193    1.3546977    1.9755590
#>  [516]    1.4631903    1.5031183    1.5941623    1.5892071    5.8746567
#>  [521]    2.2622027    2.5123510    5.3907886    5.1953430    3.1958568
#>  [526]    3.0968442    4.0582609    3.2192631    2.5363874    4.4969444
#>  [531]    5.3325839    2.3695500    3.0062342    5.6627531    6.4923205
#>  [536]    4.7920384    4.5700383    4.0006895    9.5566549    5.8871794
#>  [541]    7.4422898    5.2004848    9.2628069  784.9196167    4.6816382
#>  [546]    4.1257901    6.6807156    4.1821823    6.8080244    7.7087774
#>  [551]   12.4988031    1.4474308  985.7752686    5.5145364    2.7746949
#>  [556]    2.3561726    3.7145381    6.2821894   10.4331989    1.7673082
#>  [561]    3.1912456    7.3891306    1.3537637    0.2704858    4.0082321
#>  [566]    8.5943022    1.3064193    3.6371551    2.5390623           NA
#>  [571]    0.7411902    0.5046070    0.5680771    1.2300223    2.8467999
#>  [576]    2.6166818    0.5497193   16.0667572    1.9547974    0.9511589
#>  [581]   15.4262342    2.4667881    1.0057802    2.2017863    3.7578349
#>  [586]    5.2645087    0.7512842    2.5041356    1.8741575   11.7041502
#>  [591]   22.0120201    3.6391535    2.4130566           NA    1.3888769
#>  [596]    1.4703723    1.5291082    2.3573880    0.6399383    1.6180218
#>  [601]    2.6052721 1237.6204834   19.8997154   39.6545715 4069.6533203
#>  [606]    3.8779757    2.9248793   14.3836384   38.9334831 4267.4248047
#>  [611]    6.9302726    5.0617962    4.1785703   28.3963814    6.4566789
#>  [616]    3.4296451    3.7816880   11.0247078   27.2765732    2.2371943
#>  [621]    0.9170940    0.7460240    0.8210835    1.6487689    9.5727634
#>  [626]    1.6570802           NA    0.8196399    0.8946962   13.3170853
#>  [631]   28.8410645    1.4570224    0.2454604    0.6586674    1.0929065
#>  [636]    1.2879230           NA    2.9674864    0.5844296   11.5823431
#>  [641]           NA    2.6197197    0.6617230    1.0072753    1.0431374
#>  [646]    1.7980380    1.8940541    4.3480368    2.6686113           NA
#>  [651]    2.4794784    4.1561966    1.2986863    1.2777241    3.0134482
#>  [656]  101.8303833    3.4352007    3.0277224   13.1016092    0.5244251
#>  [661]    1.7064619    0.3486639   50.7429390    1.7649055    2.7503626
#>  [666]    0.3800137    3.3221421    3.1534879   15.4715948    1.4704005
#>  [671]    1.8855512    4.0389700    1.0823137    2.6767426    2.1071370
#>  [676]    3.6332088    0.6826217    1.0185049    3.3197520    3.8973808
#>  [681]    6.3822713    5.1280479    8.5763950    3.2864881    1.3272406
#>  [686]    3.2673051    5.7568297    8.3966360   16.3681469    7.2476711
#>  [691]    5.4942021    2.1211190    1.5519290    3.6947889    3.6529276
#>  [696]    7.1617284   23.2306347   20.4122696   17.6928806    5.1081491
#>  [701]  117.3710403    2.7161827   48.0717468   18.4067097    3.7467299
#>  [706]    3.6180439   15.2693739    4.7089896    2.5892634    9.7226076
#>  [711]  139.4568787    7.4229794   11.8008423   44.5208054   10.5249119
#>  [716]    5.9375591   20.7310448  216.7257538   12.0509796   32.5807915
#>  [721]  140.1287079   18.1983509    7.9473476    4.0145078           NA
#>  [726]    5.9600363    4.9861374   40.1272926   16.1208572   13.0407543
#>  [731]    6.8589644    4.9722199   11.0004854    7.2423544    6.4803615
#>  [736]   14.1402922   23.9029579   15.6984034   17.9236164    3.2453372
#>  [741]    9.5185261    8.6210403    3.0081079    3.5888493    6.0433631
#>  [746]    7.4204693   11.3490496    3.6138747    1.7851294    4.3751335
#>  [751]   38.7952423   25.8243275   20.6631317    2.3311818  701.8855591
#>  [756]  333.9076538    5.9194384    5.2374392   50.5938759    6.6050563
#>  [761]   29.6740894    6.8099937  729.9282227    4.7258272  377.9533081
#>  [766]    3.7225027    5.8937206    8.3230190    8.7469826    1.2891947
#>  [771]    2.5859647   75.5915375    4.7863827   45.3149376    2.4862499
#>  [776]    6.5945859    6.9634075   35.3314667    3.0827610   86.5234299
#>  [781] 1061.5833740    3.1925797   39.1028519    5.1561656  727.2340088
#>  [786]    4.6954513    4.7806416    2.0299914   67.0260162           NA
#>  [791]    8.1010742    1.6631573    1.8530455   79.0636978   30.3669281
#>  [796]    0.8927791   10.3849897    1.0268044    3.1952302    0.7755960
#>  [801]    5.7425203    7.2843447    1.2209314    1.8280462    7.8098340
#>  [806]    3.8438480    1.6488374    1.9727218   21.7567501    0.7352579
#>  [811]    1.9201657   52.0057869  127.3143768    5.6821346    2.5211284
#>  [816]    2.3330369    2.1601825    9.7243500    9.3593960    2.9505100
#>  [821]    5.4880805    8.6688786    2.6024387   11.9668989    2.1561337
#>  [826]   12.3195581    1.2745084    1.9595144    5.3821392   19.5642281
#>  [831]   16.0015182    3.0178616    4.6744413   21.4054432    2.3722150
#>  [836]   17.8877811    7.6304569   36.1747169    4.2541361   33.9568787
#>  [841]    6.3856707    2.6096203   13.1905775    2.4566786   47.8784180
#>  [846]    6.1847539   46.1483879    3.2702918    3.5770297   12.7957163
#>  [851]    5.9115996    4.5292888    5.1561074    4.0170932    3.9871593
#>  [856]    5.1863651    1.8988326    7.9102783    5.5774412 2934.2749023
#>  [861]    1.7749847    8.5469313   16.3584347   10.1700211    0.2661873
#>  [866]    6.4565039    8.4741077    0.1989040    0.4645469    1.7402502
#>  [871]   29.9008598    0.5417653    0.7619571    2.3052864   23.7764740
#>  [876]    3.5269954    6.3716865    4.5834875    0.6944337    9.3756256
#>  [881]    0.4391756    0.4102839           NA    0.4088447    4.4651365
#>  [886]    2.3560781    0.8629871    1.7296497    2.3054824    0.4738956
#>  [891]    0.8453057    0.6674856    2.9770677    0.9882508    2.5485382
#>  [896]    1.3252913    0.9046306    3.3730309    1.3325157    0.8287238
#>  [901]    3.2393219    2.8408599    1.1969875    4.9852405   16.4274426
#>  [906]    0.7676155    5.0130310    2.2948136    2.0398157    1.0926311
#>  [911]    1.6752559    2.0661981    0.7237425    4.8128242   11.1487827
#>  [916]    0.8632420    1.8443307    0.4144078    1.5147480    2.7527251
#>  [921]   13.0752268    1.8903236    7.9921408    1.5463461    0.8109860
#>  [926]    1.0667026    1.1346698    3.6560605    3.3797889    3.5629609
#>  [931]    3.4544880    4.5592079   16.6013031    4.6765566    1.6968081
#>  [936]    1.1385404    1.4192655    2.8486712    2.6313102    0.6307487
#>  [941]    2.3814776    2.7711914    0.7061450    4.9312925    1.1609619
#>  [946]    6.7711430    2.8384895    3.6513107    3.9373784    5.0244951
#>  [951]    9.3638000   17.6887131    8.8094635    4.6279211    1.6137590
#>  [956]    0.6182525    0.8786079   15.0547085   24.5552330    7.9792995
#>  [961]   64.7950058   97.0138016    9.9027309    0.5985516    1.5779028
#>  [966]   11.9724445    1.9544525  163.6211090    2.1614091    8.1083727
#>  [971]    2.6397953    3.5538256    7.1930056    0.6664237  442.5400391
#>  [976]    3.0430346    6.4073930    5.0266309    5.8590345   19.6998043
#>  [981]    4.3898072    1.1305788   13.5925970    7.2308283    1.1136869
#>  [986]    1.3520640    1.6164834    1.0973755    2.0894964    9.5560360
#>  [991]           NA    8.9295197  779.4788818    2.5705523  809.9169312
#>  [996]    3.0098879   94.3604507    8.8758574    3.4457500    4.9686089
#> [1001]    1.5195554    2.1578839    4.8023272    2.1327522    0.3200580
#> [1006]   12.4226055   12.1050863 1096.2231445 1066.9301758  129.4904938
#> [1011]    4.5963664    3.0736189    8.0031509    3.2705626    0.3757358
#> [1016]   15.2121391    2.8834486   15.9752741 1346.7353516    2.6217887
#> [1021] 1228.9621582    5.0895567    2.1218104  184.3674316    4.2164469
#> [1026]    2.8267379    6.7104831    3.8288674    3.0664554    4.4310689
#> [1031] 2268.6291504 1836.1269531    2.0746028    2.2918937   10.7542877
#> [1036]   51.3735046    6.6448908    6.1085730    1.4560728    2.8452797
#> [1041]    3.7901433    2.0456872    1.9614782    5.3406096    6.5233908
#> [1046]    5.8153443    4.9779243    5.2980742    1.9569403    3.0366473
#> [1051]    0.8441148    0.7282568    0.6270677    1.9153599    2.5157802
#> [1056]    2.5211849    1.3664742   16.0325813    1.9972137    1.1040767
#> [1061]    0.9441139    0.9234766    2.2210290    0.8783525    2.1501570
#> [1066]    8.6357822           NA    1.6162349    1.9563223    1.2261102
#> [1071]    5.9679408    2.4582469    3.3074541    0.6635520    3.4940929
#> [1076]    2.6760423    1.0429727    0.5086066    1.0268028    3.8812792
#> [1081]    3.5886321    3.9809752    7.7894588    0.8405986    1.1336366
#> [1086]    2.8971629    0.7070799    0.7151046    0.5353748    1.3802744
#> [1091]    4.1309824    4.8025975    8.7120161    2.2102430   10.5090933
#> [1096]   10.4218655   22.3232746   36.9990120    2.9090240    2.3153019
#> [1101]   76.6485138    2.9318345    1.6010859    5.8318458    2.6627228
#> [1106]    6.4075303    2.0914986   11.3002634    1.0663972    9.0038490
#> [1111]    7.7891731    1.4418688    4.8872490   13.7815018    7.2834721
#> [1116]    0.6722869   12.7788944   14.1886673    6.0767541   17.2682152
#> [1121]    5.8392038    3.2879653   25.1995487   27.0342846   11.1438723
#> [1126]   38.4615974   10.6467648   20.4387722    3.0112209    1.9950336
#> [1131]   10.1919136    1.5909361    4.7708578 1141.7640381    9.8121815
#> [1136]   22.5490570    3.3931487    9.8001604    4.6790090 1271.7685547
#> [1141]    2.8506472 1103.0401611   17.5955009    5.1776738    2.9927020
#> [1146]    2.1627703    3.1698050           NA   13.8667717 1411.4106445
#> [1151] 1272.9426270   21.3413105    0.8185354    2.8377655    2.0303440
#> [1156]   21.7762794 1345.3233643 1350.6333008    6.6278219   29.8857651
#> [1161]   52.9047775 1294.8477783   12.9526482    9.6068335   17.7135353
#> [1166]           NA    2.6911139    3.7828991    0.7059131    5.9516506
#> [1171]    4.0300317    2.7630870    5.6403260    7.4636693    2.0741365
#> [1176]    5.1799192    6.4390368    9.8243055    1.5092793    4.3210769
#> [1181]    1.7446249    3.4029963 2283.2792969    3.9234891    6.9994988
#> [1186]    4.1006012    0.6282611    1.8591487    4.4599166    2.1398880
#> [1191] 2337.1853027    4.3932910    9.6464186   12.7156582    0.9086848
#> [1196]    9.3874264    3.2540348 2646.2402344    6.6778555    3.9801006
#> [1201]   21.6677666    1.3727722    2.5189867    7.1042595   10.0052004
#> [1206]    1.5813689   23.2121410    2.8682461    1.3422523    0.7672858
#> [1211]    0.6866859    3.6084216   18.3351460    0.8394666    1.9887234
#> [1216]    1.5026515    1.3683980    5.7951837    9.8654814    2.1221330
#> [1221]    2.1047983    3.0744431    1.9053514    2.6970651    2.0816550
#> [1226]    1.9742609    9.6418734    7.6057978    3.4838214    8.8084707
#> [1231]    6.6040335    3.2611005    9.0701380    3.0636346    1.7033354
#> [1236]   12.7065725    1.9277512   11.4872437   12.6639729    1.8488846
#> [1241]    4.4552321    4.2770810    9.8547640    3.8485291    2.1161973
#> [1246]    2.0724041    6.0630097    2.5432432   29.9757633    3.4243822
#> [1251]    1.5343714    7.8658175    1.2879468    6.8999977    6.3626080
#> [1256]  268.5536194    5.7748380           NA    5.2410469    2.0550699
#> [1261]    0.4435597    5.4935684    0.9196581   75.9311295    3.3142908
#> [1266]   80.4429626    5.9293828    2.2810714    2.8269784   20.1030636
#> [1271]    1.1432312    3.6678035    1.0070125    3.5375540    2.9908266
#> [1276]   22.7290974    2.3943624    0.9211383    1.9665295    0.8259042
#> [1281]    0.4845653   25.3855438    3.8617392    6.6030455   18.8038082
#> [1286]           NA    0.5806934    3.3330538  101.8569031   14.4165783
#> [1291]    1.7161655    7.3081284    2.1098645    0.8144141    1.3382024
#> [1296]    1.4885535    0.8770674    0.6791099    1.6695246    1.2673935
#> [1301]    0.6891360    1.2439822    5.2793922    1.2573010           NA
#> [1306]    3.7120969    4.9950824   11.5787373    1.9612808   10.3544693
#> [1311]    6.0420938   18.6085644    1.5667670    1.2138346   30.0845642
#> [1316]   19.6141224    3.2639980    3.6546156   29.6098766    2.8610103
#> [1321]    6.0040512    1.8776323    3.8169975    4.7191100    1.0195367
#> [1326]    3.8605018    8.1590776    2.8668685   12.0980616    5.0243416
#> [1331]    7.0915346    2.7560163    6.1319265    5.5243936   46.6120872
#> [1336]   24.7890339    6.4685655    9.1421661   10.3797007   10.7507782
#> [1341]    7.7589669   12.2742815    4.6532531    5.1379547   23.7994213
#> [1346]   29.3476200    4.0036497    7.5182543   11.9706621   63.0551071
#> [1351]    5.1469116    8.4730129   72.0657578   10.1063595   65.6397705
#> [1356]    4.1467509   13.0881023   27.2654285   96.3133926  108.4684830
#> [1361]   15.9769907   16.9430561   14.3318129    4.6791883  126.8739243
#> [1366]    6.6298981   18.2740936   28.1178570    8.4018116   24.9042740
#> [1371]   22.9308643    5.7845116 2804.5610352    6.1323233    7.0216298
#> [1376]   34.0006905   11.0745640   23.1465626   26.1845646   15.7390766
#> [1381]    6.2733459   11.7022743    4.5109916    3.0380044   72.1676025
#> [1386]   18.0594807   16.0637493    8.0370464  176.6657867 2181.4362793
#> [1391]    9.6984138 3978.9870605    8.6989155   11.3172474   39.0961494
#> [1396] 2588.9499512 3505.7983398  144.8855133    5.1680942   30.6885090
#> [1401]    6.6054115    5.6432614    2.7389083   53.9481773   62.0971260
#> [1406] 2972.6391602  161.4343109   35.4546394   11.2379074   13.3652372
#> [1411]   15.0986557   20.7111149    9.2977657  425.2767639  216.2778320
#> [1416]    7.9142838    5.0309882    1.0399815    1.0769179    4.5379925
#> [1421]    3.6899538    2.2575519   17.9379234   22.7302589    6.5185528
#> [1426]   19.6637669    0.2854209    7.1664414    9.3295479    1.1119181
#> [1431]    1.1998634   44.4294777    6.0005445    1.2984159    0.4181677
#> [1436]    1.3962787    0.8486760    0.6826237    1.3289268   41.6967010
#> [1441]    1.6696991    0.8142897    0.3997326   64.2423019    4.2105532
#> [1446]    8.1320543    0.8433636   21.3994884    0.6499675    1.6173933
#> [1451]    2.2819724   79.2927475    2.7942066    0.6122881    5.6340408
#> [1456]    2.3877366    2.5358839    1.6963638    2.8207321    1.6094570
#> [1461]    3.0496490    5.2695556    0.7497861    1.1942160    2.8949137
#> [1466]    1.8337013    7.7278204    3.0212984    4.6463079    1.1313710
#> [1471]    3.0398493    1.1938435    0.5559963    3.7946312    0.7459199
#> [1476]    2.6556878    4.8397417    2.1508582    4.1808691    1.3044889
#> [1481]    3.6563311    5.6848607    4.3057156    4.3253880   44.0154037
#> [1486]    6.8031969    1.0149941   16.5446339   50.2134972    1.4178553
#> [1491]    5.2461462    6.6964250    1.3668361    7.0547361   15.4979038
#> [1496]    2.5466137   12.0476017   16.9358387    4.2765665    3.0282452
#> [1501]    2.0438735    3.0750351   30.2993698    4.1311669   10.5620518
#> [1506]    6.3157725    2.0541127    6.4616790   52.7001801    6.5350013
#> [1511]    2.7538323    5.5697684    7.0785255    0.7346154    4.6684666
#> [1516]    2.3665750    2.1643167   13.1310358   11.3682957    1.0712550
#> [1521]   12.9957743 1371.8287354    1.3735292    4.6520715   20.4687824
#> [1526]   14.5587559 1770.5562744    2.6400170   15.1324883    1.9400562
#> [1531]    4.7408748    2.0517797   32.1368103    0.9072015 1766.3382568
#> [1536]   11.0576754    2.3649356    7.1545792    5.3592334   29.8745804
#> [1541]   99.2443008    1.9519557    3.5576828    5.4862013   19.1255341
#> [1546]    1.0205218   74.6288681    2.6257737    3.8454990    0.9508846
#> [1551]   15.9569130    3.9706428    6.0614076    0.9358777    0.4645265
#> [1556]    1.3660873    2.9063818    6.6953201    1.7190092    0.9622721
#> [1561]    1.7018661   11.3596716    3.0443096    0.6346511   10.0340395
#> [1566]    0.8095649    0.9709995    3.2444031    0.5028589    2.7934396
#> [1571]    6.8828177    0.5587204    1.6042945    1.3587892    0.8313419
#> [1576]    2.4558291    1.7974735    3.6726115    5.6037540    6.7877126
#> [1581]    3.6458204    0.8579472    8.0946331   12.1906815    1.5101539
#> [1586]    6.0351577   11.0641689   17.6339569    3.6026669   16.1998940
#> [1591]    2.8316128    4.9478583   27.5424156    7.0986490    3.9904847
#> [1596]    4.6039705    3.3738575   12.1051941   11.3188763   14.8368187
#> [1601]    9.5498314    1.9773377   13.8263979   23.9170589   13.4375019
#> [1606]    9.8440132   11.2628098    2.5026691   22.5849972   29.0189171
#> [1611]   18.8118534   22.0679207    4.0647068    2.0535538    1.5048116
#> [1616]    3.3824587    2.3311884   32.8195572   37.0816650    7.0685787
#> [1621]    5.5009451    5.8517952    4.9319654    3.4151902    4.2116370
#> [1626]    8.8043442 1099.1087646    5.3256183    5.2614517  480.0812378
#> [1631]    5.3612590   12.7172546    6.3167968   14.1994934   59.6927795
#> [1636]  964.6279297 1400.3564453  535.6882324   23.6954079   14.5343561
#> [1641]    2.9595783   17.3649712    1.0824900 1221.8245850  147.4770660
#> [1646]  683.7954712    6.1305389    4.9751444   15.9264107   18.4570618
#> [1651] 1083.5487061  191.7899017  875.8353271  577.2622681   71.0305328
#> [1656]    8.1075430    5.3227873   11.6976309    0.4594952    1.4792782
#> [1661]    1.6332765    4.2618947    6.4441838    2.9269114  130.0458374
#> [1666]    5.1534815    3.5288918    2.2328265    7.3872643   35.0871201
#> [1671]  164.8385925   41.0983658    3.6965251    3.6046982   34.9871025
#> [1676]   54.6165199    3.3092432    6.2893038   54.9078522    4.6468277
#> [1681]    5.5542288   52.0769882    7.5430121   11.7523575   32.7870789
#> [1686]    4.3187008   22.1579170    5.4699397    1.8834021    9.8157177
#> [1691]    3.3649621   10.4119244   12.9897251    3.0194745   20.3988075
#> [1696]    9.6839437    1.9245056   27.7328892    4.6774187    2.8958423
#> [1701]    5.1254649   25.3332367   15.3362989    5.6253791    9.0580263
#> [1706]    3.3217881   16.1069527    5.7460155    9.0998583    6.4395881
#> [1711]   27.5900745   11.9862118   10.4788322    4.7713022    7.4465909
#> [1716]   21.6194534    3.4900868   11.9859657    7.1533313   53.6382294
#> [1721]   22.4019108    3.4466097   11.8166838   31.7925739    7.1903763
#> [1726]   22.3436050   21.0166111   11.6625166    9.6446323   11.8060122
#> [1731]   10.7140808   20.5072823    5.8385706   12.4566240   27.2418690
#> [1736] 1374.2124023    5.0976796    8.5298624    8.9547720   14.1582394
#> [1741]    3.6345949    8.9698286  746.4771729   16.0491295   14.2799292
#> [1746]   12.4969416   16.1063213   17.6739025   13.8779955    5.8102989
#> [1751]    4.7912970    8.5829220    7.5092740   16.8982792    8.7955656
#> [1756]   27.1313457   10.5999660  102.9700699    5.2469325   78.4538498
#> [1761]   23.4321194   13.5085144   28.0264759   42.0644264    3.0340507
#> [1766]   16.6190434 1717.7260742    6.9299235   10.5656214   27.8841705
#> [1771]   17.4288807   47.0360756    5.2313685   49.5542450    4.6091428
#> [1776]    7.5845995    5.1649594    5.6527944    6.7112393    7.1952438
#> [1781]    2.8361075  936.4321899   10.8392658  300.9952393    3.7918711
#> [1786]    5.8666444    9.0892420    7.9013219    5.9726405    6.4315825
#> [1791]    6.7033081  174.0914154    9.4583406   13.8090487   25.1833706
#> [1796]   10.3936863   11.1641397    3.6089337    4.3211293    4.5236745
#> [1801]    5.9249415   19.1762638   44.9207954 1162.3734131    9.1217899
#> [1806]    6.2500715   14.8576088    9.4355440   27.3175831   75.4738541
#> [1811] 1927.7430420   10.6061239    2.5857298    5.2106519   16.0033913
#> [1816]   13.5474854   30.9249420 2882.4428711   37.9162636   75.5530014
#> [1821]    6.0951519    4.3891191   10.3061371    6.6429935   39.4176941
#> [1826]   10.0774698   83.8411789   21.2222996           NA    0.6372588
#> [1831]    3.5606251    2.5927734    3.2620273    2.3674390    1.8626410
#> [1836]    6.6079321    2.4800649    6.8728633    2.8025930   10.0381966
#> [1841]    4.8456726   89.1146164    4.3337107    3.8712926   42.9793968
#> [1846]    2.5299530    7.4297533    4.6089058    3.5378845    0.1817949
#> [1851]    1.1290787    1.5784779    1.1125787    2.0033450           NA
#> [1856]    1.0376083    1.9011122    2.3181555    1.6446155    0.9089839
#> [1861]    0.4841611    0.6897894    0.7658206    0.6156495    1.4828655
#> [1866]    2.3340645    1.1662629    0.9815852    2.3534944    2.1499813
#> [1871]    0.7019742    0.3516256    3.2850077    5.8242555           NA
#> [1876]    1.3007295    1.5015216    0.8093400    3.2225409    2.6426129
#> [1881]    2.3901305    2.9790335    2.9894137    5.2419791    4.8620076
#> [1886]    0.3997991    3.0470288   11.9397249    3.6320026    8.3058691
#> [1891]    1.3834330    4.1316576    3.7130520    3.9005911   16.1633472
#> [1896]    3.6801958   12.0339565    1.1500748    1.2219627    0.5826390
#> [1901]    3.3800447    5.2994637    2.6451149    2.7287869    3.1930273
#> [1906]    1.8436399    2.9893756    4.9069676    5.8526864    1.9956532
#> [1911]    5.7515755    9.3381653    3.7572572    0.4758977    0.5950958
#> [1916]    1.2651656    0.5604061    1.5873302    1.7309831    2.2026825
#> [1921]           NA    0.8321332    3.1331923    1.8596388    4.0986276
#> [1926]    1.4462790    5.0948448    3.3446779   14.7490797    4.2720022
#> [1931]    2.3573306   12.4373245    5.4349809    5.5168352    7.1895194
#> [1936]    1.3353804   31.1978798    6.0550547    5.3862381    2.3742425
#> [1941]    1.6283454    3.8663564    2.5557170    3.9340308    4.8355684
#> [1946]    0.8258027           NA    1.6850734    8.2018566    2.8547313
#> [1951]    2.7901099    1.2237481    1.2317826    5.9977107    2.4985216
#> [1956]    5.4254308   10.2619724    3.6585343    0.7505842    1.0290449
#> [1961]    1.4102111   31.6295795    6.0977502    3.3116033    6.6416101
#> [1966]   13.4169693    2.0772371    2.5722609    1.4239205    1.1951129
#> [1971]   19.3541183    6.6528106    7.6534238    3.3320429    3.9984677
#> [1976]    2.1092513    8.5107756    2.7920604   28.8576584    1.6512991
#> [1981]    2.0430546    6.1738434    2.2872250    3.3046799    4.1366568
#> [1986]    2.0184140    3.4700344    2.1820960    9.8032455    9.3485680
#> [1991]    7.2345314   20.3594875    7.5089312 1627.1451416    5.3730831
#> [1996]    8.5319214   12.6467562    6.4055276    5.4178729    3.8174756
#> [2001]   60.1280174    6.4091296   14.2986145   13.2007456   17.6533527
#> [2006]    4.6876645 2218.6071777    5.9873571    5.4104090   13.5144920
#> [2011]    4.3813696    8.5980825   19.0352879 1989.9606934    6.5922198
#> [2016]    8.3580027    5.7576084  341.0995483    3.3168538    9.5687895
#> [2021]    9.9157639    8.6866083  366.3923645    6.9480758   10.2027311
#> [2026]    7.9508238   12.0425510    5.7334862    5.7009211    9.3929729
#> [2031]    4.2744284   16.8116989    3.3318050   61.5876274    3.6692767
#> [2036]    4.6599665   16.0338726   43.3646393    0.4666836    1.1231649
#> [2041]    3.3837605    5.3292937    3.6405241    9.7523746    0.9140767
#> [2046]    0.7435523    0.2535407    5.4856982   15.5203247    3.2470930
#> [2051]    2.7420650    0.6101449    1.0404911    2.7917345    6.6811185
#> [2056]    2.0745556    1.2540616    0.3098164    1.6586421    9.5700045
#> [2061]    0.7319268   12.7017021    0.6637144    1.5885706    0.8827127
#> [2066]    2.1940100    3.7667232    2.0905075    0.6379106    2.9787626
#> [2071]    0.4874143    0.3836070    0.5107485    1.1823709    1.2667042
#> [2076]   19.2034588    1.6550628    1.1661954    0.8966293    3.2779715
#> [2081]   11.0150242    1.6130922   26.5314026    2.5117977    2.3132839
#> [2086]    2.2919271    3.1338563    1.5114740    2.0381725    5.2738991
#> [2091]    2.9814677    3.5173035    2.9813018    1.8998176    7.4101906
#> [2096]    5.3717108    4.2854128    0.2399864    6.4908400    1.6760609
#> [2101]    4.9045634    3.0678418    2.1384492    9.3216219   10.4645767
#> [2106]    0.3764410    1.2218126    1.2995534    9.7801199    2.0047073
#> [2111]   26.3789768    1.0760976    0.9736537    2.0357609 1576.8568115
#> [2116]    1.4469386    3.0481942    1.6708410    0.9496741    2.6938272
#> [2121]    1.8960530    2.1988547    1.2718045    1.2236259    1.4919758
#> [2126]    4.3979073   71.3828812    2.0391872    2.2703087    2.6103971
#> [2131]    1.4898348    1.5168892    0.8818803    1.8848048    0.6037043
#> [2136]    1.8731611    7.1765389    1.9562593   11.7375755    1.6933267
#> [2141]    1.5986614    5.0060325    5.2257977    4.1671195    4.4332304
#> [2146]    6.8677626    2.4653215    6.3500257   10.9838686    6.4111762
#> [2151]    9.4890432    4.7053976    1.8102279    1.4213001    1.6444297
#> [2156]    1.9174886    0.4131429    1.5709261    3.1760740    1.0655589
#> [2161]  919.2457886    1.5643872    1.7901465    1.7823997    6.9229293
#> [2166]    2.2213833    0.8164910    6.7707281 1034.1815186    2.8209743
#> [2171]    0.6380021    1.1908475    2.2225995           NA    1.8188674
#> [2176]    2.1192210    1.1434188    1.2050375    1.7906495    3.5892394
#> [2181]    0.7533023           NA    1.4840194    2.2305763    2.4143374
#> [2186]    1.9114826    1.0137789    4.2369156    2.1006327    2.7787836
#> [2191]    0.9601986    8.1295986    7.2806950    1.1032010    2.3385823
#> [2196]    1.1522059    1.4659723    8.5681458    1.8708251    9.6687212
#> [2201]    5.7849174           NA    2.4449232    1.6775528    4.9673247
#> [2206]    1.8457032   11.6521568    5.6321864    0.9540480   12.1773853
#> [2211]    0.4559720    0.7230437    1.5481060    1.7013626    1.9925474
#> [2216]    4.0501847    1.5732721    2.9336040    1.2153755    2.3473213
#> [2221]    1.6044481    3.8102901    5.9565816    3.5146675    2.6926224
#> [2226]    4.9956584    7.3882804   31.3160343    1.3993325    6.2274776
#> [2231]    2.9698203    3.2010090    1.3510920    5.6216455    3.3691561
#> [2236]    2.7835443    0.4399868    2.5057735    5.0695376    0.6980689
#> [2241]    1.8963152    8.0071716    9.3238049    2.4393957    4.9562755
#> [2246]    2.4916747    1.4161593    1.7179910    2.8897645    2.1166553
#> [2251]    2.5877254   12.7337999    1.2360386    2.1893265    1.5300977
#> [2256]    3.0833626    8.4302454    4.9040179   10.9480925    2.1738741
#> [2261]    3.3114023    6.0667453           NA    0.6554648    3.5936801
#> [2266]    1.5739572    5.1975174    3.9125762    9.3439398    7.9241571
#> [2271]    3.9933949    4.6318932    8.3959627    0.7565725    2.3423707
#> [2276]   15.7967987   12.7200508    3.1725900   11.7995720    0.9761860
#> [2281]    1.1349560    1.9718618    4.9297872    7.0475721    2.8053823
#> [2286]   34.1454964  156.3358002    2.1250823    4.3354549   64.4767151
#> [2291]  278.9322815    0.7963252    3.8422236   61.7775192  190.2516785
#> [2296]    1.4124620    1.3479694    1.6552913    4.4471312  329.0337830
#> [2301]    2.3342044    2.1571195    0.9733863    2.4092717    4.8433948
#> [2306]    2.3092387  360.7164307    3.0873225    1.7288386    2.3073480
#> [2311]    0.5996385    5.3622589 1420.7687988    7.9223099    5.6030631
#> [2316]    0.6277632    0.8355366    0.4711815    1.3496840    0.8089792
#> [2321]    5.8526330    1.8503476    0.6572140  305.6041870    1.4397534
#> [2326]    0.8994330  277.0521240    2.2045338           NA           NA
#> [2331]    0.5602361    1.2226131    1.3568290    1.7129589    2.0047822
#> [2336]    1.7247094    6.7786064    2.6411271    1.9010485    1.7608452
#> [2341]    4.4309907    3.1676409    3.3830304    4.6565275    3.3298314
#> [2346]    1.5452514    3.5828693    1.7718617    0.8061830    1.2403909
#> [2351]    4.6554375    1.6074916    3.6399906    1.1538744    4.6306715
#> [2356]   22.4013309    4.1293302    6.8009396   32.1985893    9.7335100
#> [2361]    0.5418288    0.5632182    2.9177530    2.1166260    6.6263289
#> [2366]    2.1903484    6.9556012    3.3954957    3.9068611    1.8365928
#> [2371]    3.1866224    6.6193805    5.9870872    2.3148339   31.7243080
#> [2376]    1.7895136    3.5860963    1.8591824   77.3616867    3.4268165
#> [2381]    0.5249496    1.5734435    3.8141046    2.7002668 1096.7601318
#> [2386] 1496.8631592    3.2043941    1.8505754  587.6149292 1741.0694580
#> [2391]  885.2774048   23.7601643  594.6196899    0.4923916   29.5300331
#> [2396]    1.3024459           NA    0.7680741    0.8888112    2.1178827
#> [2401]    1.4857029    1.1276029    1.3496284    2.1555452    2.1827545
#> [2406]    1.2788655    1.2924441    0.9934639    5.3240347    1.0079803
#> [2411]    1.3528888   10.8723679    1.9321351    2.5913424    2.0170100
#> [2416]    2.6124203   25.0653572    0.7242321    2.9123745    1.8755200
#> [2421]    5.4409308    1.6049031    4.8650875    3.9305305    2.3677256
#> [2426]    2.1769772    6.9278378    0.9471752   11.2096748    8.1439409
#> [2431]    7.7992425    8.1538477    7.7033796   15.1453743   31.8052731
#> [2436]   18.0042858    1.2677478    5.5277863    2.1457639    3.4404881
#> [2441]    6.6042099    4.3178186   10.6584396    4.6253743    4.4684582
#> [2446]    9.8839989    0.4913557    4.2288108    2.3422270  220.2428894
#> [2451]   76.3024292    2.4397397    0.7708665    0.5308517  153.5867767
#> [2456]    0.7601256    5.8568654    3.3581190    1.1768376    1.9733516
#> [2461]    8.9577475    1.6991717    0.6544989    0.8063468    0.5237735
#> [2466]    1.2291242    0.4108943   11.5966806    1.5359516    0.5914992
#> [2471]    1.5501552    0.4674177    1.4722780   10.3540297   12.8971653
#> [2476]   76.4729843    3.3384745    8.8360243    0.8269219    0.8899398
#> [2481]    6.1822929    1.4949089    6.1136923   45.9732246    1.8630898
#> [2486]    0.4607324    2.4314377           NA    0.3267280    7.7629838
#> [2491]    0.9005343    6.4958630    0.6801585    1.1879852   13.1560583
#> [2496]    2.3879337           NA    0.7733446    1.1475980    3.0229218
#> [2501]   14.0746317    0.5247985    1.2050325    9.2619877    0.7634576
#> [2506]    1.0241749    1.0909539    5.3293109    2.7063551    3.4095821
#> [2511]    0.6897098    1.0274373    0.8178927    1.5089374    0.7430726
#> [2516]    1.1275156   21.9422588    1.3811653    3.5942285    1.6271605
#> [2521]    2.1611414    0.8879982    0.8763292    1.7225560   13.2923336
#> [2526]    3.3895564   21.7352753    0.4632308    1.5177442    1.9604896
#> [2531]    5.8416729    0.6393901    2.9566762    0.3774208    1.6599923
#> [2536]    3.0378304    2.7158394    0.6954392    1.9243698    1.4208319
#> [2541]    0.3644979    0.9764859    1.7312529    1.9927244    8.3358564
#> [2546]    0.3344689    1.5944563    1.4439087    2.7181752    0.9094949
#> [2551]    1.2030648    2.7429266    6.6508756    2.8126271    3.6208489
#> [2556]    6.5295534    0.3424659    0.5115961    0.5035965    1.0872059
#> [2561]    1.5785052    0.2461324    1.9896445    0.8427312    0.7660883
#> [2566]    2.3450923    2.4805903    0.8671566    0.6639645    0.5334827
#> [2571]    0.4702013    3.1127882   64.2761841    5.7723532    0.9449326
#> [2576]    9.8559513    1.5376849    0.6502208    0.8867813    0.9406697
#> [2581]    2.6839008    3.2349586   26.2348919    2.3463531    0.7232664
#> [2586]    0.5971866    2.7867749    1.2694967    5.0291767    1.4869373
#> [2591]    1.9182748    0.8268527    4.4961567    0.4737805    2.8711464
#> [2596]    3.6332841    1.5385498    4.7165794    1.2112534    2.5973957
#> [2601]    4.9447703    0.9545295    1.4072028    1.8630619    1.4024746
#> [2606]    0.5282810    1.8168713    4.9301190    0.1499837    0.7057289
#> [2611]    1.6758749    1.9225767    0.6456749    1.0736265    0.6631852
#> [2616]    2.0254166    0.8686433    2.9635856    2.8306408    0.6591658
#> [2621]    1.8536581    0.7700182    0.6434809    3.0102704    0.6942499
#> [2626]    2.7054408    6.5840912    0.4648814    2.2047083    0.8025916
#> [2631]    0.9868059    0.9812470    1.6068337    1.6466388    0.6577185
#> [2636]    3.3152702    0.3456087    1.4819642    1.6930362    0.6172115
#> [2641]    4.8450933   10.5450792   48.2902794    0.6500265    0.6208660
#> [2646]    0.6039580    0.9597225    0.3537683    0.8526208    0.2884314
#> [2651]    0.8374825    1.8498940    2.6492484    0.8956540    1.2795352
#> [2656]    3.1287794    2.0273194    3.7718840    1.8026490    0.7220110
#> [2661]    0.7175305    4.3183942    1.4981960    0.2836370    0.8527241
#> [2666]    3.5981882    0.3067524    1.3901409    2.7463164    2.1976302
#> [2671]    0.2309106    0.2099868    0.8203602    1.9904572    4.0084724
#> [2676]    0.5368133    0.4482878    1.4325606    2.3086529    0.4549935
#> [2681]    3.1426587    1.3987031    0.4663780    2.3534548           NA
#> [2686]    3.8060784    0.4556686    1.3394214    1.1004189    2.4211915
#> [2691]    3.3820996   31.4883842    0.7637222    2.0601268    0.7897440
#> [2696]    1.1024669    1.4127746    0.7815835    0.3922873    2.3492901
#> [2701]    1.7412961    1.0913932    2.1832561    5.6013675    0.5410951
#> [2706]           NA    1.5191215    8.5703373    1.4032021    2.8650708
#> [2711]    1.6290002    0.6252948    2.6510727    5.6316738    0.6707575
#> [2716]    1.2557933    2.8557181    6.8578634    0.6140221    4.2484360
#> [2721]    0.6619285    1.2980875    3.2068131    1.3282340    1.5175761
#> [2726]    2.3767309    0.8093471    0.6040459    0.6218860    1.4518211
#> [2731]    1.7191668    1.9510572    0.3967183    1.0216656    3.4807718
#> [2736]   12.6569872    1.2336719   11.7144327    0.6784623    1.0983104
#> [2741]    0.8703533    0.9070129    2.6424198    1.1471686    0.9019348
#> [2746]    2.5049481   11.4490557    0.5566154    1.9753987    2.3320930
#> [2751]    3.7091351    2.4257834    0.7362632    0.8419358    3.9386895
#> [2756]    0.9128963    1.6723500    1.3298150    0.6335756    0.6562991
#> [2761]    3.2722898    2.3044112    1.4757828    8.4148054    0.3076566
#> [2766]    1.2632453    0.8317384    6.0139632    2.7857358    1.4718702
#> [2771]    2.8902125    3.4636676    2.9858587    1.1537194    6.6131492
#> [2776]    0.2267639    0.5474497    0.4946014    1.2936714    1.6368855
#> [2781]    0.9594902    1.4098917    0.7878828    0.6673341    3.1816411
#> [2786]    1.2840652    2.6560736   19.9554462    1.0239617    1.8550906
#> [2791]    2.3586714    0.4221451    2.8507216    3.4885705    7.3413062
#> [2796]   35.7378654    1.4843854    0.8229836    1.9679027    0.9418428
#> [2801]    2.5392017    0.9196062    4.2101269           NA    0.8723121
#> [2806]    1.1009536    2.2867596    5.5058069    1.2713206    2.4941492
#> [2811]    1.5185130    2.7117639    4.5919437    5.1406364    2.8025935
#> [2816]    5.8709002   13.7791338   14.5640020    4.8297606    7.8658409
#> [2821]    6.8229294   27.7137413    5.3379407   14.4617805    4.4964433
#> [2826]   16.1921463   10.2128115    4.2068844   10.3527794   30.8382893
#> [2831]    6.8301725    9.5161114   46.6889000    5.9609809   13.2284927
#> [2836]    7.8532238   36.7056198    8.2213917    7.4940300   11.8976650
#> [2841]   13.4008360   19.2198009    2.2085142   16.2607841   27.6975002
#> [2846]   84.5502777    8.9375477   17.9089260   15.0652647    9.7659874
#> [2851]   20.4718914   10.5261488  102.4522476   17.9931507   11.4199753
#> [2856]   19.1676826   17.0927010   24.3487606    6.6103988    8.1302404
#> [2861]    9.6394157   30.0782166   10.6189022    3.9972832   13.7391968
#> [2866]   28.9560966    6.7734051    8.2172832   10.3078299   20.1655922
#> [2871]   18.3504696    2.8396056   27.5377102    4.3330150    4.9756093
#> [2876]    8.2070942    2.5828452    7.6423254    7.4956326    3.3020027
#> [2881]    8.2716713   10.5372095    5.9630933    5.2237558    9.0436430
#> [2886]    7.9005804    4.6265149    4.5348096   14.0217648   11.7508678
#> [2891]    5.1471868   11.1270819    7.9933724   12.3714352           NA
#> [2896]    9.6415024    1.0363822    2.1618273    2.2038519   16.1064682
#> [2901]    6.1964874    5.3220701    1.6039859   98.4771194    4.0282149
#> [2906]    2.6477625   16.8007278    3.5877471    2.6565950    5.3537140
#> [2911]   39.1409950    3.9032741   51.0578613   14.7823324   23.7130947
#> [2916]   41.8512573   27.0040703    8.8542757   40.3777084   36.5384369
#> [2921]    6.2642756   10.2587223   25.8907166   44.1283989   16.7547779
#> [2926]    1.5664260   36.2730598   45.0348854    5.4926982    9.8852091
#> [2931]   38.9618721   45.9797630           NA    3.3837142    1.5297805
#> [2936]    2.0968738    4.4807029    0.6716859    4.6078916    2.3965619
#> [2941]    0.9893416    1.2310627    5.1445694    1.9888287    0.6328241
#> [2946]    0.5137627    5.9770460    0.9208446    1.4403317    4.3081975
#> [2951]    0.9803630    0.8477652    0.4548255   11.3158970    1.3294666
#> [2956]    1.6702332    4.7679958    0.8518687    1.8222345    2.7682319
#> [2961]    4.0749702    0.4489682           NA    0.6329405    1.6010697
#> [2966]    0.1622699    0.8471114    0.4407594    1.1682943    1.4405993
#> [2971]    2.0458810    6.8692994    2.7137775    1.1100407    0.3899231