As detailed in the documentation of the Spectra class, a Spectra
object
is a container for mass spectrometry (MS) data that includes both the mass
peaks data (or peaks data, generally m/z and intensity values) as well
as spectra metadata (so called spectra variables). Spectra variables
generally define one value per spectrum, while for peaks variables one value
per mass peak is defined and hence multiple values per spectrum (depending
on the number of mass peaks of a spectrum).
Data can be extracted from a Spectra
object using dedicated accessor
functions or also using the $
operator. Depending on the backend class
used by the Spectra
to represent the data, data can also be added or
replaced (again, using dedicated functions or using $<-
).
Usage
asDataFrame(
object,
i = seq_along(object),
spectraVars = spectraVariables(object)
)
# S4 method for class 'Spectra'
acquisitionNum(object)
# S4 method for class 'Spectra'
centroided(object)
# S4 method for class 'Spectra'
centroided(object) <- value
# S4 method for class 'Spectra'
collisionEnergy(object)
# S4 method for class 'Spectra'
collisionEnergy(object) <- value
coreSpectraVariables()
# S4 method for class 'Spectra'
dataOrigin(object)
# S4 method for class 'Spectra'
dataOrigin(object) <- value
# S4 method for class 'Spectra'
dataStorage(object)
# S4 method for class 'Spectra'
intensity(object, f = processingChunkFactor(object), ...)
# S4 method for class 'Spectra'
ionCount(object)
# S4 method for class 'Spectra'
isCentroided(object, ...)
# S4 method for class 'Spectra'
isEmpty(x)
# S4 method for class 'Spectra'
isolationWindowLowerMz(object)
# S4 method for class 'Spectra'
isolationWindowLowerMz(object) <- value
# S4 method for class 'Spectra'
isolationWindowTargetMz(object)
# S4 method for class 'Spectra'
isolationWindowTargetMz(object) <- value
# S4 method for class 'Spectra'
isolationWindowUpperMz(object)
# S4 method for class 'Spectra'
isolationWindowUpperMz(object) <- value
# S4 method for class 'Spectra'
length(x)
# S4 method for class 'Spectra'
lengths(x, use.names = FALSE)
# S4 method for class 'Spectra'
msLevel(object)
# S4 method for class 'Spectra'
mz(object, f = processingChunkFactor(object), ...)
# S4 method for class 'Spectra'
peaksData(
object,
columns = c("mz", "intensity"),
f = processingChunkFactor(object),
...,
BPPARAM = bpparam()
)
# S4 method for class 'Spectra'
peaksVariables(object)
# S4 method for class 'Spectra'
polarity(object)
# S4 method for class 'Spectra'
polarity(object) <- value
# S4 method for class 'Spectra'
precScanNum(object)
# S4 method for class 'Spectra'
precursorCharge(object)
# S4 method for class 'Spectra'
precursorIntensity(object)
# S4 method for class 'Spectra'
precursorMz(object)
# S4 method for class 'Spectra'
precursorMz(object, ...) <- value
# S4 method for class 'Spectra'
rtime(object)
# S4 method for class 'Spectra'
rtime(object) <- value
# S4 method for class 'Spectra'
scanIndex(object)
# S4 method for class 'Spectra'
smoothed(object)
# S4 method for class 'Spectra'
smoothed(object) <- value
# S4 method for class 'Spectra'
spectraData(object, columns = spectraVariables(object))
# S4 method for class 'Spectra'
spectraData(object) <- value
# S4 method for class 'Spectra'
spectraNames(object)
# S4 method for class 'Spectra'
spectraNames(object) <- value
# S4 method for class 'Spectra'
spectraVariables(object)
# S4 method for class 'Spectra'
tic(object, initial = TRUE)
# S4 method for class 'Spectra'
uniqueMsLevels(object, ...)
# S4 method for class 'Spectra'
x$name
# S4 method for class 'Spectra'
x$name <- value
# S4 method for class 'Spectra'
x[[i, j, ...]]
# S4 method for class 'Spectra'
x[[i, j, ...]] <- value
Arguments
- object
A
Spectra
object.- i
For
asDataFrame()
: Anumeric
indicating which scans to coerce to aDataFrame
(default isseq_along(object)
).- spectraVars
character()
indicating what spectra variables to add to theDataFrame
. Default isspectraVariables(object)
, i.e. all available variables.- value
A vector with values to replace the respective spectra variable. Needs to be of the correct data type for the spectra variable.
- f
For
intensity()
,mz()
andpeaksData()
: factor defining how data should be chunk-wise loaded an processed. Defaults toprocessingChunkFactor()
.- ...
Additional arguments.
- x
A
Spectra
object.- use.names
For
lengths()
: ignored.- columns
For
spectraData()
accessor: optionalcharacter
with column names (spectra variables) that should be included in the returnedDataFrame
. By default, all columns are returned. ForpeaksData()
accessor: optionalcharacter
with requested columns in the individualmatrix
of the returnedlist
. Defaults toc("mz", "value")
but any values returned bypeaksVariables(object)
withobject
being theSpectra
object are supported.- BPPARAM
Parallel setup configuration. See
BiocParallel::bpparam()
for more information. See alsoprocessingChunkSize()
for more information on parallel processing.- initial
For
tic()
:logical(1)
whether the initially reported total ion current should be reported, or whether the total ion current should be (re)calculated on the actual data (initial = FALSE
, same asionCount()
).- name
For
$
and$<-
: the name of the spectra variable to return or set.- j
For
[
: not supported.
Spectra variables
A common set of core spectra variables are defined for Spectra
. These
have a pre-defined data type and each Spectra
will return a value for
these if requested. If no value for a spectra variable is defined, a missing
value (of the correct data type) is returned. The list of core spectra
variables and their respective data type is:
acquisitionNum
integer(1)
: the index of acquisition of a spectrum during an MS run.centroided
logical(1)
: whether the spectrum is in profile or centroid mode.collisionEnergy
numeric(1)
: collision energy used to create an MSn spectrum.dataOrigin
character(1)
: the origin of the spectrum's data, e.g. the mzML file from which it was read.dataStorage
character(1)
: the (current) storage location of the spectrum data. This value depends on the backend used to handle and provide the data. For an in-memory backend like theMsBackendDataFrame
this will be"<memory>"
, for an on-disk backend such as theMsBackendHdf5Peaks
it will be the name of the HDF5 file where the spectrum's peak data is stored.isolationWindowLowerMz
numeric(1)
: lower m/z for the isolation window in which the (MSn) spectrum was measured.isolationWindowTargetMz
numeric(1)
: the target m/z for the isolation window in which the (MSn) spectrum was measured.isolationWindowUpperMz
numeric(1)
: upper m/z for the isolation window in which the (MSn) spectrum was measured.msLevel
integer(1)
: the MS level of the spectrum.polarity
integer(1)
: the polarity of the spectrum (0
and1
representing negative and positive polarity, respectively).precScanNum
integer(1)
: the scan (acquisition) number of the precursor for an MSn spectrum.precursorCharge
integer(1)
: the charge of the precursor of an MSn spectrum.precursorIntensity
numeric(1)
: the intensity of the precursor of an MSn spectrum.precursorMz
numeric(1)
: the m/z of the precursor of an MSn spectrum.rtime
numeric(1)
: the retention time of a spectrum.scanIndex
integer(1)
: the index of a spectrum within a (raw) file.smoothed
logical(1)
: whether the spectrum was smoothed.
For each of these spectra variable a dedicated accessor function is defined
(such as msLevel()
or rtime()
) that allows to extract the values of
that spectra variable for all spectra in a Spectra
object. Also,
replacement functions are defined, but not all backends might support
replacing values for spectra variables. As described above, additional
spectra variables can be defined or added. The spectraVariables()
function
can be used to
Values for multiple spectra variables, or all spectra vartiables* can be
extracted with the spectraData()
function.
Peaks variables
Spectra
also provide mass peak data with the m/z and intensity values
being the core peaks variables:
intensity
numeric
: intensity values for the spectrum's peaks.mz
numeric
: the m/z values for the spectrum's peaks.
Values for these can be extracted with the mz()
and intensity()
functions, or the peaksData()
function. The former functions return a
NumericList
with the respective values, while the latter returns a List
with numeric
two-column matrices. The list of peaks matrices can also
be extracted using as(x, "list")
or as(x, "SimpleList")
with x
being
a Spectra
object.
Some Spectra
/backends provide also values for additional peaks variables.
The set of available peaks variables can be extracted with the
peaksVariables()
function.
Functions to access MS data
The set of available functions to extract data from, or set data in, a
Spectra
object are (in alphabetical order) listed below. Note that there
are also other functions to extract information from a Spectra
object
documented in addProcessing()
.
$
,$<-
: gets (or sets) a spectra variable for all spectra inobject
. See examples for details. Note that replacing values of a peaks variable is not supported with a non-empty processing queue, i.e. if any filtering or data manipulations on the peaks data was performed. In these casesapplyProcessing()
needs to be called first to apply all cached data operations.[[
,[[<-
: access or set/add a single spectrum variable (column) in the backend.acquisitionNum()
: returns the acquisition number of each spectrum. Returns aninteger
of length equal to the number of spectra (withNA_integer_
if not available).asDataFrame()
: converts theSpectra
to aDataFrame
(in long format) contining all data. Returns aDataFrame
.centroided()
,centroided<-
: gets or sets the centroiding information of the spectra.centroided()
returns alogical
vector of length equal to the number of spectra withTRUE
if a spectrum is centroided,FALSE
if it is in profile mode andNA
if it is undefined. See alsoisCentroided()
for estimating from the spectrum data whether the spectrum is centroided.value
forcentroided<-
is either a singlelogical
or alogical
of length equal to the number of spectra inobject
.collisionEnergy()
,collisionEnergy<-
: gets or sets the collision energy for all spectra inobject
.collisionEnergy()
returns anumeric
with length equal to the number of spectra (NA_real_
if not present/defined),collisionEnergy<-
takes anumeric
of length equal to the number of spectra inobject
.coreSpectraVariables()
: returns the core spectra variables along with their expected data type.dataOrigin()
,dataOrigin<-
: gets or sets the data origin for each spectrum.dataOrigin()
returns acharacter
vector (same length thanobject
) with the origin of the spectra.dataOrigin<-
expects acharacter
vector (same length thanobject
) with the replacement values for the data origin of each spectrum.dataStorage()
: returns acharacter
vector (same length thanobject
) with the data storage location of each spectrum.intensity()
: gets the intensity values from the spectra. Returns aIRanges::NumericList()
ofnumeric
vectors (intensity values for each spectrum). The length of the list is equal to the number ofspectra
inobject
.ionCount()
: returns anumeric
with the sum of intensities for each spectrum. If the spectrum is empty (seeisEmpty()
),NA_real_
is returned.isCentroided()
: a heuristic approach assessing if the spectra inobject
are in profile or centroided mode. The function takes theqtl
th quantile top peaks, then calculates the difference between adjacent m/z value and returnsTRUE
if the first quartile is greater thank
. (SeeSpectra:::.isCentroided()
for the code.)isEmpty()
: checks whether a spectrum inobject
is empty (i.e. does not contain any peaks). Returns alogical
vector of length equal number of spectra.isolationWindowLowerMz()
,isolationWindowLowerMz<-
: gets or sets the lower m/z boundary of the isolation window.isolationWindowTargetMz()
,isolationWindowTargetMz<-
: gets or sets the target m/z of the isolation window.isolationWindowUpperMz()
,isolationWindowUpperMz<-
: gets or sets the upper m/z boundary of the isolation window.length()
: gets the number of spectra in the object.lengths()
: gets the number of peaks (m/z-intensity values) per spectrum. Returns aninteger
vector (length equal to the number of spectra). For empty spectra,0
is returned.msLevel()
: gets the spectra's MS level. Returns an integer vector (names being spectrum names, length equal to the number of spectra) with the MS level for each spectrum.mz()
: gets the mass-to-charge ratios (m/z) from the spectra. Returns aIRanges::NumericList()
or length equal to the number of spectra, each element anumeric
vector with the m/z values of one spectrum.peaksData()
: gets the peaks data for all spectra inobject
. Peaks data consist of the m/z and intensity values as well as possible additional annotations (variables) of all peaks of each spectrum. The function returns aS4Vectors::SimpleList()
of two dimensional arrays (eithermatrix
ordata.frame
), with each array providing the values for the requested peak variables (by default"mz"
and"intensity"
). Optional parametercolumns
is passed to the backend'speaksData()
function to allow the selection of specific (or additional) peaks variables (columns) that should be extracted (if available). Importantly, it is not guaranteed that each backend supports this parameter (while each backend must support extraction of"mz"
and"intensity"
columns). Parametercolumns
defaults toc("mz", "intensity")
but any value returned bypeaksVariables(object)
is supported. Note also that it is possible to extract the peak data withas(x, "list")
andas(x, "SimpleList")
as alist
andSimpleList
, respectively. Note however that, in contrast topeaksData()
,as()
does not support the parametercolumns
.peaksVariables()
: lists the available variables for mass peaks provided by the backend. Default peak variables are"mz"
and"intensity"
(which all backends need to support and provide), but some backends might provide additional variables. These variables correspond to the column names of the peak data array returned bypeaksData()
.polarity()
,polarity<-
: gets or sets the polarity for each spectrum.polarity()
returns aninteger
vector (length equal to the number of spectra), with0
and1
representing negative and positive polarities, respectively.polarity<-
expects aninteger
vector of length 1 or equal to the number of spectra.precursorCharge()
,precursorIntensity()
,precursorMz()
,precScanNum()
,precAcquisitionNum()
: gets the charge (integer
), intensity (numeric
), m/z (numeric
), scan index (integer
) and acquisition number (interger
) of the precursor for MS level > 2 spectra from the object. Returns a vector of length equal to the number of spectra inobject
.NA
are reported for MS1 spectra of if no precursor information is available.rtime()
,rtime<-
: gets or sets the retention times (in seconds) for each spectrum.rtime()
returns anumeric
vector (length equal to the number of spectra) with the retention time for each spectrum.rtime<-
expects a numeric vector with length equal to the number of spectra.scanIndex()
: returns aninteger
vector with the scan index for each spectrum. This represents the relative index of the spectrum within each file. Note that this can be different to theacquisitionNum
of the spectrum which represents the index of the spectrum during acquisition/measurement (as reported in the mzML file).smoothed()
,smoothed<-
: gets or sets whether a spectrum is smoothed.smoothed()
returns alogical
vector of length equal to the number of spectra.smoothed<-
takes alogical
vector of length 1 or equal to the number of spectra inobject
.spectraData()
: gets general spectrum metadata (annotation, also called header).spectraData()
returns aDataFrame
. Note that this method does by default not return m/z or intensity values.spectraData<-
: replaces the full spectra data of theSpectra
object with the one provided withvalue
. ThespectraData<-
function expects aDataFrame
to be passed as value with the same number of rows as there a spectra inobject
. Note that replacing values of peaks variables is not supported with a non-empty processing queue, i.e. if any filtering or data manipulations on the peaks data was performed. In these casesapplyProcessing()
needs to be called first to apply all cached data operations and empty the processing queue.spectraNames()
,spectraNames<-
: gets or sets the spectra names.spectraVariables()
: returns acharacter
vector with the available spectra variables (columns, fields or attributes of each spectrum) available inobject
. Note thatspectraVariables()
does not list the peak variables ("mz"
,"intensity"
and eventual additional annotations for each MS peak). Peak variables are returned bypeaksVariables()
.tic()
: gets the total ion current/count (sum of signal of a spectrum) for all spectra inobject
. By default, the value reported in the original raw data file is returned. For an empty spectrum,0
is returned.uniqueMsLevels()
: get the unique MS levels available inobject
. This function is supposed to be more efficient thanunique(msLevel(object))
.
See also
addProcessing()
for functions to analyzeSpectra
.Spectra for a general description of the
Spectra
object.
Examples
## Create a Spectra from mzML files and use the `MsBackendMzR` on-disk
## backend.
sciex_file <- dir(system.file("sciex", package = "msdata"),
full.names = TRUE)
sciex <- Spectra(sciex_file, backend = MsBackendMzR())
sciex
#> MSn data (Spectra) with 1862 spectra in a MsBackendMzR backend:
#> msLevel rtime scanIndex
#> <integer> <numeric> <integer>
#> 1 1 0.280 1
#> 2 1 0.559 2
#> 3 1 0.838 3
#> 4 1 1.117 4
#> 5 1 1.396 5
#> ... ... ... ...
#> 1858 1 258.636 927
#> 1859 1 258.915 928
#> 1860 1 259.194 929
#> 1861 1 259.473 930
#> 1862 1 259.752 931
#> ... 33 more variables/columns.
#>
#> file(s):
#> 20171016_POOL_POS_1_105-134.mzML
#> 20171016_POOL_POS_3_105-134.mzML
## Get the number of spectra in the data set
length(sciex)
#> [1] 1862
## Get the number of mass peaks per spectrum - limit to the first 6
lengths(sciex) |> head()
#> [1] 578 1529 1600 1664 1417 1602
## Get the MS level for each spectrum - limit to the first 6 spectra
msLevel(sciex) |> head()
#> [1] 1 1 1 1 1 1
## Alternatively, we could also use $ to access a specific spectra variable.
## This could also be used to add additional spectra variables to the
## object (see further below).
sciex$msLevel |> head()
#> [1] 1 1 1 1 1 1
## Get the intensity and m/z values.
intensity(sciex)
#> NumericList of length 1862
#> [[1]] 0 412 0 0 412 0 0 412 0 0 412 0 0 ... 0 412 0 0 412 0 0 412 0 0 412 412 0
#> [[2]] 0 140 0 0 140 0 0 419 0 0 140 0 0 ... 0 140 0 0 140 0 0 140 0 0 279 140 0
#> [[3]] 0 132 263 263 132 132 0 0 132 132 0 0 ... 0 0 132 0 0 132 0 0 132 0 132 0
#> [[4]] 0 139 139 0 0 139 0 0 139 139 0 139 0 ... 0 0 139 0 0 277 0 0 139 0 139 0
#> [[5]] 0 164 0 0 328 0 164 0 0 164 0 0 164 ... 164 0 0 164 0 0 164 0 164 0 328 0
#> [[6]] 0 146 146 146 0 0 146 0 0 146 0 0 ... 146 0 0 146 146 0 0 146 0 0 146 0
#> [[7]] 0 296 0 296 0 0 148 0 0 148 0 0 148 ... 0 0 148 0 0 148 0 0 148 0 0 148 0
#> [[8]] 0 170 0 170 170 170 0 170 0 0 170 0 ... 170 0 0 170 0 0 170 0 0 170 170 0
#> [[9]] 0 157 0 314 0 0 157 0 0 157 0 0 314 ... 0 0 157 0 0 157 0 0 157 0 157 0
#> [[10]] 0 151 302 302 604 0 302 0 0 151 0 0 ... 151 0 0 151 0 151 0 151 0 151 0
#> ...
#> <1852 more elements>
mz(sciex)
#> NumericList of length 1862
#> [[1]] 105.043454833354 105.044900379521 ... 133.982027457992 133.983660012089
#> [[2]] 105.027517517902 105.028962955892 ... 133.982017159657 133.98364971537
#> [[3]] 105.037635723077 105.03908123069 ... 133.988547442185 133.990180037683
#> [[4]] 105.037635723077 105.03908123069 ... 133.98364971537 133.985282281029
#> [[5]] 105.034744757582 105.036190245303 ... 133.986914856634 133.988547442185
#> [[6]] 105.041972245917 105.043417783368 ... 133.982017159657 133.98364971537
#> [[7]] 105.037635723077 105.03908123069 ... 133.996710519135 133.998343164363
#> [[8]] 105.034744757582 105.036190245303 ... 133.980384613891 133.982017159657
#> [[9]] 105.040526728357 105.041972255863 ... 133.97875207807 133.980384613891
#> [[10]] 105.036190235357 105.037635733023 ... 133.985282281029 133.986914856634
#> ...
#> <1852 more elements>
## Convert a subset of the Spectra object to a long DataFrame.
asDataFrame(sciex, i = 1:3, spectraVars = c("rtime", "msLevel"))
#> DataFrame with 3707 rows and 4 columns
#> mz intensity rtime msLevel
#> <numeric> <numeric> <numeric> <integer>
#> 1 105.043 0 0.28 1
#> 2 105.045 412 0.28 1
#> 3 105.046 0 0.28 1
#> 4 107.055 0 0.28 1
#> 5 107.057 412 0.28 1
#> ... ... ... ... ...
#> 3703 133.984 0 0.838 1
#> 3704 133.985 132 0.838 1
#> 3705 133.987 0 0.838 1
#> 3706 133.989 132 0.838 1
#> 3707 133.990 0 0.838 1
## Create a Spectra providing a `DataFrame` containing the spectrum data.
spd <- DataFrame(msLevel = c(1L, 2L), rtime = c(1.1, 1.2))
spd$mz <- list(c(100, 103.2, 104.3, 106.5), c(45.6, 120.4, 190.2))
spd$intensity <- list(c(200, 400, 34.2, 17), c(12.3, 15.2, 6.8))
s <- Spectra(spd)
s
#> MSn data (Spectra) with 2 spectra in a MsBackendMemory backend:
#> msLevel rtime scanIndex
#> <integer> <numeric> <integer>
#> 1 1 1.1 NA
#> 2 2 1.2 NA
#> ... 16 more variables/columns.
## List all available spectra variables (i.e. spectrum data and metadata).
spectraVariables(s)
#> [1] "msLevel" "rtime"
#> [3] "acquisitionNum" "scanIndex"
#> [5] "dataStorage" "dataOrigin"
#> [7] "centroided" "smoothed"
#> [9] "polarity" "precScanNum"
#> [11] "precursorMz" "precursorIntensity"
#> [13] "precursorCharge" "collisionEnergy"
#> [15] "isolationWindowLowerMz" "isolationWindowTargetMz"
#> [17] "isolationWindowUpperMz"
## For all *core* spectrum variables accessor functions are available. These
## return NA if the variable was not set.
centroided(s)
#> [1] NA NA
dataStorage(s)
#> [1] "<memory>" "<memory>"
rtime(s)
#> [1] 1.1 1.2
precursorMz(s)
#> [1] NA NA
## The core spectra variables are:
coreSpectraVariables()
#> msLevel rtime acquisitionNum
#> "integer" "numeric" "integer"
#> scanIndex mz intensity
#> "integer" "NumericList" "NumericList"
#> dataStorage dataOrigin centroided
#> "character" "character" "logical"
#> smoothed polarity precScanNum
#> "logical" "integer" "integer"
#> precursorMz precursorIntensity precursorCharge
#> "numeric" "numeric" "integer"
#> collisionEnergy isolationWindowLowerMz isolationWindowTargetMz
#> "numeric" "numeric" "numeric"
#> isolationWindowUpperMz
#> "numeric"
## Add an additional metadata column.
s$spectrum_id <- c("sp_1", "sp_2")
## List spectra variables, "spectrum_id" is now also listed
spectraVariables(s)
#> [1] "msLevel" "rtime"
#> [3] "acquisitionNum" "scanIndex"
#> [5] "dataStorage" "dataOrigin"
#> [7] "centroided" "smoothed"
#> [9] "polarity" "precScanNum"
#> [11] "precursorMz" "precursorIntensity"
#> [13] "precursorCharge" "collisionEnergy"
#> [15] "isolationWindowLowerMz" "isolationWindowTargetMz"
#> [17] "isolationWindowUpperMz" "spectrum_id"
## Get the values for the new spectra variable
s$spectrum_id
#> [1] "sp_1" "sp_2"
## Extract specific spectra variables.
spectraData(s, columns = c("spectrum_id", "msLevel"))
#> DataFrame with 2 rows and 2 columns
#> spectrum_id msLevel
#> <character> <integer>
#> 1 sp_1 1
#> 2 sp_2 2
## -------- PEAKS VARIABLES AND DATA --------
## Get the peak data (m/z and intensity values).
pks <- peaksData(s)
pks
#> List of length 2
pks[[1]]
#> mz intensity
#> [1,] 100.0 200.0
#> [2,] 103.2 400.0
#> [3,] 104.3 34.2
#> [4,] 106.5 17.0
pks[[2]]
#> mz intensity
#> [1,] 45.6 12.3
#> [2,] 120.4 15.2
#> [3,] 190.2 6.8
## Note that we could get the same resulb by coercing the `Spectra` to
## a `list` or `SimpleList`:
as(s, "list")
#> [[1]]
#> mz intensity
#> [1,] 100.0 200.0
#> [2,] 103.2 400.0
#> [3,] 104.3 34.2
#> [4,] 106.5 17.0
#>
#> [[2]]
#> mz intensity
#> [1,] 45.6 12.3
#> [2,] 120.4 15.2
#> [3,] 190.2 6.8
#>
as(s, "SimpleList")
#> List of length 2
## Or use `mz()` and `intensity()` to extract the m/z and intensity values
## separately
mz(s)
#> NumericList of length 2
#> [[1]] 100 103.2 104.3 106.5
#> [[2]] 45.6 120.4 190.2
intensity(s)
#> NumericList of length 2
#> [[1]] 200 400 34.2 17
#> [[2]] 12.3 15.2 6.8
## Some `MsBackend` classes provide support for arbitrary peaks variables
## (in addition to the mandatory `"mz"` and `"intensity"` values. Below
## we create a simple data frame with an additional peak variable `"pk_ann"`
## and create a `Spectra` with a `MsBackendMemory` for that data.
## Importantly the number of values (per spectrum) need to be the same
## for all peak variables.
tmp <- data.frame(msLevel = c(2L, 2L), rtime = c(123.2, 123.5))
tmp$mz <- list(c(103.1, 110.4, 303.1), c(343.2, 453.1))
tmp$intensity <- list(c(130.1, 543.1, 40), c(0.9, 0.45))
tmp$pk_ann <- list(c(NA_character_, "A", "P"), c("B", "P"))
## Create the Spectra. With parameter `peaksVariables` we can define
## the columns in `tmp` that contain peaks variables.
sps <- Spectra(tmp, source = MsBackendMemory(),
peaksVariables = c("mz", "intensity", "pk_ann"))
peaksVariables(sps)
#> [1] "mz" "intensity" "pk_ann"
## Extract just the m/z and intensity values
peaksData(sps)[[1L]]
#> mz intensity
#> [1,] 103.1 130.1
#> [2,] 110.4 543.1
#> [3,] 303.1 40.0
## Extract the full peaks data
peaksData(sps, columns = peaksVariables(sps))[[1L]]
#> mz intensity pk_ann
#> 1 103.1 130.1 <NA>
#> 2 110.4 543.1 A
#> 3 303.1 40.0 P
## Access just the pk_ann variable
sps$pk_ann
#> [[1]]
#> [1] NA "A" "P"
#>
#> [[2]]
#> [1] "B" "P"
#>