The Single-cell proteomics data analysis using QFeatures
and
scp
workshop
is provided as two vignettes. The first one provides a general
introduction to the QFeatures
class in the general context of mass
spectrometry-based proteomics data manipulation. The second vignette
focuses on single-cell application and introduces the scp
package
(Vanderaa and Gatto 2021Vanderaa, Christophe, and Laurent Gatto. 2021. “Replication of Single-Cell Proteomics Data Reveals Important Computational Challenges.” Expert Rev. Proteomics, October.) as an extension of QFeatures
. This second
vignette also provides exercises that give the attendee the
opportunity to apply the learned concepts to reproduce a published
analysis on a subset of a real data set. A recent
workshop, offered
at the 2024 EuBIC winter school, provides teaching material for the
new scplainer analysis workflow.
A tutorial presenting Use Cases and Examples for Annotation of
Untargeted Metabolomics
Data using
the MetaboAnnotation
and MetaboCoreUtils
packages
(Rainer et al. 2022Rainer, Johannes, Andrea Vicini, Liesa Salzer, Jan Stanstrup, Josep M Badia, Steffen Neumann, Michael A Stravs, et al. 2022. “A Modular and Expandable Ecosystem for Metabolomics Data Annotation in R.” Metabolites 12 (2): 173.).
Exploring and analyzing LC-MS data with Spectra and xcms provides an overview of recent developments in Bioconductor to work with mass spectrometry (MsExperiment, Spectra) and specifically LC-MS data (xcms) and walks through the preprocessing of a small data set emphasizing on selection of data-dependent settings for the individual pre-processing steps.
The SpectraTutorials package provides three different vignettes:
To compile and render the teaching material, you will also need the BiocStyle package and the (slighly modified) Modern Statistics for Model Biology (msmb) HTML Book Style by Mike Smith:
Clone the book repository and render the book with
The following packages have been used to generate this document.
## R version 4.5.0 (2025-04-11)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
##
## Matrix products: default
## BLAS: /opt/R-4.5/lib/R/lib/libRblas.so
## LAPACK: /opt/R-4.5/lib/R/lib/libRlapack.so; LAPACK version 3.12.1
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Europe/Brussels
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] mzID_1.46.0 patchwork_1.3.0
## [3] factoextra_1.0.7 gplots_3.2.0
## [5] limma_3.64.1 lubridate_1.9.4
## [7] forcats_1.0.0 stringr_1.5.1
## [9] purrr_1.0.4 readr_2.1.5
## [11] tidyr_1.3.1 tibble_3.2.1
## [13] tidyverse_2.0.0 MSnID_1.42.0
## [15] cleaver_1.46.0 Biostrings_2.76.0
## [17] XVector_0.48.0 ggplot2_3.5.2
## [19] dplyr_1.1.4 msdata_0.48.0
## [21] MsDataHub_1.8.0 rpx_2.16.0
## [23] MsCoreUtils_1.20.0 QFeatures_1.19.1
## [25] MultiAssayExperiment_1.34.0 SummarizedExperiment_1.38.1
## [27] Biobase_2.68.0 GenomicRanges_1.60.0
## [29] GenomeInfoDb_1.44.0 IRanges_2.42.0
## [31] MatrixGenerics_1.20.0 matrixStats_1.5.0
## [33] Spectra_1.18.2 BiocParallel_1.42.0
## [35] S4Vectors_0.46.0 BiocGenerics_0.54.0
## [37] generics_0.1.4 mzR_2.42.0
## [39] Rcpp_1.0.14 BiocStyle_2.36.0
##
## loaded via a namespace (and not attached):
## [1] RColorBrewer_1.1-3 rstudioapi_0.17.1 jsonlite_2.0.0
## [4] magrittr_2.0.3 MALDIquant_1.22.3 farver_2.1.2
## [7] rmarkdown_2.29 fs_1.6.6 vctrs_0.6.5
## [10] memoise_2.0.1 RCurl_1.98-1.17 rstatix_0.7.2
## [13] htmltools_0.5.8.1 S4Arrays_1.8.0 BiocBaseUtils_1.10.0
## [16] AnnotationHub_3.16.0 curl_6.2.3 broom_1.0.8
## [19] Rhdf5lib_1.30.0 Formula_1.2-5 SparseArray_1.8.0
## [22] rhdf5_2.52.0 sass_0.4.10 KernSmooth_2.23-26
## [25] bslib_0.9.0 plyr_1.8.9 impute_1.82.0
## [28] cachem_1.1.0 igraph_2.1.4 mime_0.13
## [31] lifecycle_1.0.4 iterators_1.0.14 pkgconfig_2.0.3
## [34] Matrix_1.7-3 R6_2.6.1 fastmap_1.2.0
## [37] GenomeInfoDbData_1.2.14 clue_0.3-66 digest_0.6.37
## [40] colorspace_2.1-1 pcaMethods_2.0.0 AnnotationDbi_1.70.0
## [43] ExperimentHub_2.16.0 RSQLite_2.3.11 ggpubr_0.6.0
## [46] filelock_1.0.3 labeling_0.4.3 timechange_0.3.0
## [49] httr_1.4.7 abind_1.4-8 compiler_4.5.0
## [52] bit64_4.6.0-1 withr_3.0.2 doParallel_1.0.17
## [55] backports_1.5.0 carData_3.0-5 DBI_1.2.3
## [58] R.utils_2.13.0 ggsignif_0.6.4 MASS_7.3-65
## [61] rappdirs_0.3.3 DelayedArray_0.34.1 caTools_1.18.3
## [64] gtools_3.9.5 tools_4.5.0 PSMatch_1.13.2
## [67] R.oo_1.27.1 glue_1.8.0 R.cache_0.17.0
## [70] rhdf5filters_1.20.0 grid_4.5.0 cluster_2.1.8.1
## [73] reshape2_1.4.4 gtable_0.3.6 msmbstyle_0.0.22
## [76] tzdb_0.5.0 preprocessCore_1.70.0 R.methodsS3_1.8.2
## [79] hms_1.1.3 data.table_1.17.4 MetaboCoreUtils_1.16.1
## [82] car_3.1-3 xml2_1.3.8 utf8_1.2.5
## [85] ggrepel_0.9.6 BiocVersion_3.21.1 foreach_1.5.2
## [88] pillar_1.10.2 BiocFileCache_2.16.0 lattice_0.22-6
## [91] bit_4.6.0 tidyselect_1.2.1 knitr_1.50
## [94] bookdown_0.34.2 ProtGenerics_1.40.0 xfun_0.52
## [97] statmod_1.5.0 MSnbase_2.34.1 pheatmap_1.0.12
## [100] stringi_1.8.7
## [ reached 'max' / getOption("max.print") -- omitted 23 entries ]
Page built: 2025-06-05 using R version 4.5.0 (2025-04-11)