Chapter 7 Additional materials and session information

7.1 Additional materials

  • The Single-cell proteomics data analysis using QFeatures and scp workshop is provided as two vignettes. The first one provides a general introduction to the QFeatures class in the general context of mass spectrometry-based proteomics data manipulation. The second vignette focuses on single-cell application and introduces the scp package (Vanderaa and Gatto 2021Vanderaa, Christophe, and Laurent Gatto. 2021. “Replication of Single-Cell Proteomics Data Reveals Important Computational Challenges.” Expert Rev. Proteomics, October.) as an extension of QFeatures. This second vignette also provides exercises that give the attendee the opportunity to apply the learned concepts to reproduce a published analysis on a subset of a real data set. A recent workshop, offered at the 2024 EuBIC winter school, provides teaching material for the new scplainer analysis workflow.

  • A tutorial presenting Use Cases and Examples for Annotation of Untargeted Metabolomics Data using the MetaboAnnotation and MetaboCoreUtils packages (Rainer et al. 2022Rainer, Johannes, Andrea Vicini, Liesa Salzer, Jan Stanstrup, Josep M Badia, Steffen Neumann, Michael A Stravs, et al. 2022. “A Modular and Expandable Ecosystem for Metabolomics Data Annotation in R.” Metabolites 12 (2): 173.).

  • Exploring and analyzing LC-MS data with Spectra and xcms provides an overview of recent developments in Bioconductor to work with mass spectrometry (MsExperiment, Spectra) and specifically LC-MS data (xcms) and walks through the preprocessing of a small data set emphasizing on selection of data-dependent settings for the individual pre-processing steps.

The SpectraTutorials package provides three different vignettes:

7.2 Compiling the book locally

To compile and render the teaching material, you will also need the BiocStyle package and the (slighly modified) Modern Statistics for Model Biology (msmb) HTML Book Style by Mike Smith:

BiocManager::install(c("bookdown", "BiocStyle", "lgatto/msmbstyle"))

Clone the book repository and render the book with

bookdown::render_book(".")

7.3 Session information

The following packages have been used to generate this document.

sessionInfo()
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
## 
## Matrix products: default
## BLAS:   /opt/Rpatched/lib/R/lib/libRblas.so 
## LAPACK: /opt/Rpatched/lib/R/lib/libRlapack.so;  LAPACK version 3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: Europe/Brussels
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] mzID_1.44.0                 patchwork_1.3.0            
##  [3] factoextra_1.0.7            gplots_3.2.0               
##  [5] limma_3.62.2                lubridate_1.9.4            
##  [7] forcats_1.0.0               stringr_1.5.1              
##  [9] purrr_1.0.4                 readr_2.1.5                
## [11] tibble_3.2.1                tidyverse_2.0.0            
## [13] MSnID_1.40.0                magrittr_2.0.3             
## [15] tidyr_1.3.1                 ggplot2_3.5.1              
## [17] dplyr_1.1.4                 msdata_0.46.0              
## [19] MsDataHub_1.7.1             rpx_2.14.1                 
## [21] MsCoreUtils_1.18.0          QFeatures_1.17.3           
## [23] MultiAssayExperiment_1.32.0 SummarizedExperiment_1.36.0
## [25] Biobase_2.66.0              GenomicRanges_1.58.0       
## [27] GenomeInfoDb_1.42.3         IRanges_2.40.1             
## [29] MatrixGenerics_1.18.1       matrixStats_1.5.0          
## [31] Spectra_1.16.0              BiocParallel_1.40.0        
## [33] S4Vectors_0.44.0            BiocGenerics_0.53.5        
## [35] generics_0.1.3              mzR_2.40.0                 
## [37] Rcpp_1.0.14                 BiocStyle_2.34.0           
## 
## loaded via a namespace (and not attached):
##   [1] bitops_1.0-9            filelock_1.0.3          R.oo_1.27.0            
##   [4] preprocessCore_1.68.0   XML_3.99-0.18           lifecycle_1.0.4        
##   [7] rstatix_0.7.2           doParallel_1.0.17       lattice_0.22-6         
##  [10] MASS_7.3-60.2           backports_1.5.0         sass_0.4.9             
##  [13] rmarkdown_2.29          jquerylib_0.1.4         yaml_2.3.10            
##  [16] DBI_1.2.3               RColorBrewer_1.1-3      abind_1.4-8            
##  [19] zlibbioc_1.52.0         R.cache_0.16.0          R.utils_2.13.0         
##  [22] AnnotationFilter_1.30.0 RCurl_1.98-1.16         rappdirs_0.3.3         
##  [25] GenomeInfoDbData_1.2.13 ggrepel_0.9.6           pheatmap_1.0.12        
##  [28] MSnbase_2.32.0          ncdf4_1.23              codetools_0.2-20       
##  [31] DelayedArray_0.32.0     xml2_1.3.7              tidyselect_1.2.1       
##  [34] UCSC.utils_1.2.0        farver_2.1.2            BiocFileCache_2.14.0   
##  [37] jsonlite_1.9.1          Formula_1.2-5           iterators_1.0.14       
##  [40] foreach_1.5.2           tools_4.4.1             glue_1.8.0             
##  [43] SparseArray_1.6.2       BiocBaseUtils_1.8.0     xfun_0.51              
##  [46] withr_3.0.2             BiocManager_1.30.25     fastmap_1.2.0          
##  [49] rhdf5filters_1.18.0     caTools_1.18.3          digest_0.6.37          
##  [52] timechange_0.3.0        R6_2.6.1                mime_0.12              
##  [55] colorspace_2.1-1        gtools_3.9.5            RSQLite_2.3.9          
##  [58] R.methodsS3_1.8.2       utf8_1.2.4              data.table_1.17.0      
##  [61] PSMatch_1.10.0          httr_1.4.7              S4Arrays_1.6.0         
##  [64] pkgconfig_2.0.3         gtable_0.3.6            blob_1.2.4             
##  [67] impute_1.80.0           XVector_0.46.0          htmltools_0.5.8.1      
##  [70] carData_3.0-5           bookdown_0.34.2         MALDIquant_1.22.3      
##  [73] ProtGenerics_1.38.0     clue_0.3-66             scales_1.3.0           
##  [76] png_0.1-8               knitr_1.49              MetaboCoreUtils_1.14.0 
##  [79] rstudioapi_0.17.1       tzdb_0.4.0              reshape2_1.4.4         
##  [82] curl_6.2.1              cachem_1.1.0            rhdf5_2.50.2           
##  [85] BiocVersion_3.20.0      KernSmooth_2.23-24      parallel_4.4.1         
##  [88] AnnotationDbi_1.68.0    vsn_3.74.0              msmbstyle_0.0.22       
##  [91] pillar_1.10.1           grid_4.4.1              vctrs_0.6.5            
##  [94] pcaMethods_1.98.0       ggpubr_0.6.0            car_3.1-3              
##  [97] dbplyr_2.5.0            cluster_2.1.6           evaluate_1.0.3         
## [100] cli_3.6.4              
##  [ reached getOption("max.print") -- omitted 26 entries ]

Page built: 2025-03-05 using R version 4.4.1 (2024-06-14)