The Single-cell proteomics data analysis using QFeatures
and
scp
workshop
is provided as two vignettes. The first one provides a general
introduction to the QFeatures
class in the general context of mass
spectrometry-based proteomics data manipulation. The second vignette
focuses on single-cell application and introduces the scp
package
(Vanderaa and Gatto 2021Vanderaa, Christophe, and Laurent Gatto. 2021. “Replication of Single-Cell Proteomics Data Reveals Important Computational Challenges.” Expert Rev. Proteomics, October.) as an extension of QFeatures
. This second
vignette also provides exercises that give the attendee the
opportunity to apply the learned concepts to reproduce a published
analysis on a subset of a real data set. A recent
workshop, offered
at the 2024 EuBIC winter school, provides teaching material for the
new scplainer analysis workflow.
A tutorial presenting Use Cases and Examples for Annotation of
Untargeted Metabolomics
Data using
the MetaboAnnotation
and MetaboCoreUtils
packages
(Rainer et al. 2022Rainer, Johannes, Andrea Vicini, Liesa Salzer, Jan Stanstrup, Josep M Badia, Steffen Neumann, Michael A Stravs, et al. 2022. “A Modular and Expandable Ecosystem for Metabolomics Data Annotation in R.” Metabolites 12 (2): 173.).
Exploring and analyzing LC-MS data with Spectra and xcms provides an overview of recent developments in Bioconductor to work with mass spectrometry (MsExperiment, Spectra) and specifically LC-MS data (xcms) and walks through the preprocessing of a small data set emphasizing on selection of data-dependent settings for the individual pre-processing steps.
The SpectraTutorials package provides three different vignettes:
To compile and render the teaching material, you will also need the BiocStyle package and the (slighly modified) Modern Statistics for Model Biology (msmb) HTML Book Style by Mike Smith:
Clone the book repository and render the book with
The following packages have been used to generate this document.
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
##
## Matrix products: default
## BLAS: /opt/Rpatched/lib/R/lib/libRblas.so
## LAPACK: /opt/Rpatched/lib/R/lib/libRlapack.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Europe/Brussels
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] mzID_1.44.0 patchwork_1.3.0
## [3] factoextra_1.0.7 gplots_3.2.0
## [5] limma_3.62.2 lubridate_1.9.4
## [7] forcats_1.0.0 stringr_1.5.1
## [9] purrr_1.0.4 readr_2.1.5
## [11] tibble_3.2.1 tidyverse_2.0.0
## [13] MSnID_1.40.0 magrittr_2.0.3
## [15] tidyr_1.3.1 ggplot2_3.5.1
## [17] dplyr_1.1.4 msdata_0.46.0
## [19] MsDataHub_1.7.1 rpx_2.14.1
## [21] MsCoreUtils_1.18.0 QFeatures_1.17.3
## [23] MultiAssayExperiment_1.32.0 SummarizedExperiment_1.36.0
## [25] Biobase_2.66.0 GenomicRanges_1.58.0
## [27] GenomeInfoDb_1.42.3 IRanges_2.40.1
## [29] MatrixGenerics_1.18.1 matrixStats_1.5.0
## [31] Spectra_1.16.0 BiocParallel_1.40.0
## [33] S4Vectors_0.44.0 BiocGenerics_0.53.5
## [35] generics_0.1.3 mzR_2.40.0
## [37] Rcpp_1.0.14 BiocStyle_2.34.0
##
## loaded via a namespace (and not attached):
## [1] bitops_1.0-9 filelock_1.0.3 R.oo_1.27.0
## [4] preprocessCore_1.68.0 XML_3.99-0.18 lifecycle_1.0.4
## [7] rstatix_0.7.2 doParallel_1.0.17 lattice_0.22-6
## [10] MASS_7.3-60.2 backports_1.5.0 sass_0.4.9
## [13] rmarkdown_2.29 jquerylib_0.1.4 yaml_2.3.10
## [16] DBI_1.2.3 RColorBrewer_1.1-3 abind_1.4-8
## [19] zlibbioc_1.52.0 R.cache_0.16.0 R.utils_2.13.0
## [22] AnnotationFilter_1.30.0 RCurl_1.98-1.16 rappdirs_0.3.3
## [25] GenomeInfoDbData_1.2.13 ggrepel_0.9.6 pheatmap_1.0.12
## [28] MSnbase_2.32.0 ncdf4_1.23 codetools_0.2-20
## [31] DelayedArray_0.32.0 xml2_1.3.7 tidyselect_1.2.1
## [34] UCSC.utils_1.2.0 farver_2.1.2 BiocFileCache_2.14.0
## [37] jsonlite_1.9.1 Formula_1.2-5 iterators_1.0.14
## [40] foreach_1.5.2 tools_4.4.1 glue_1.8.0
## [43] SparseArray_1.6.2 BiocBaseUtils_1.8.0 xfun_0.51
## [46] withr_3.0.2 BiocManager_1.30.25 fastmap_1.2.0
## [49] rhdf5filters_1.18.0 caTools_1.18.3 digest_0.6.37
## [52] timechange_0.3.0 R6_2.6.1 mime_0.12
## [55] colorspace_2.1-1 gtools_3.9.5 RSQLite_2.3.9
## [58] R.methodsS3_1.8.2 utf8_1.2.4 data.table_1.17.0
## [61] PSMatch_1.10.0 httr_1.4.7 S4Arrays_1.6.0
## [64] pkgconfig_2.0.3 gtable_0.3.6 blob_1.2.4
## [67] impute_1.80.0 XVector_0.46.0 htmltools_0.5.8.1
## [70] carData_3.0-5 bookdown_0.34.2 MALDIquant_1.22.3
## [73] ProtGenerics_1.38.0 clue_0.3-66 scales_1.3.0
## [76] png_0.1-8 knitr_1.49 MetaboCoreUtils_1.14.0
## [79] rstudioapi_0.17.1 tzdb_0.4.0 reshape2_1.4.4
## [82] curl_6.2.1 cachem_1.1.0 rhdf5_2.50.2
## [85] BiocVersion_3.20.0 KernSmooth_2.23-24 parallel_4.4.1
## [88] AnnotationDbi_1.68.0 vsn_3.74.0 msmbstyle_0.0.22
## [91] pillar_1.10.1 grid_4.4.1 vctrs_0.6.5
## [94] pcaMethods_1.98.0 ggpubr_0.6.0 car_3.1-3
## [97] dbplyr_2.5.0 cluster_2.1.6 evaluate_1.0.3
## [100] cli_3.6.4
## [ reached getOption("max.print") -- omitted 26 entries ]
Page built: 2025-03-05 using R version 4.4.1 (2024-06-14)